Description of fast matrix multiplication algorithm: ⟨8×15×32:2336⟩

Algorithm type

16X2Y12Z8+56X4Y12Z4+16X4Y8Z8+32X4Y8Z6+40X2Y12Z4+16XY12Z4+80X4Y8Z4+168X2Y12Z2+32X2Y8Z6+40XY12Z2+16X2Y8Z4+24X2Y4Z8+112XY12Z+32X2Y8Z3+8X4Y4Z4+136X2Y8Z2+32XY8Z3+16X2Y4Z4+56XY8Z+24XY4Z4+104X2Y4Z2+32X2Y2Z4+32XY3Z4+112X2Y3Z2+64X2Y2Z3+16XY4Z2+160X2Y2Z2+96XY4Z+80XY3Z2+64XY2Z3+48XYZ4+16X2YZ2+224XY3Z+112XY2Z+32XYZ2+192XYZ16X2Y12Z856X4Y12Z416X4Y8Z832X4Y8Z640X2Y12Z416XY12Z480X4Y8Z4168X2Y12Z232X2Y8Z640XY12Z216X2Y8Z424X2Y4Z8112XY12Z32X2Y8Z38X4Y4Z4136X2Y8Z232XY8Z316X2Y4Z456XY8Z24XY4Z4104X2Y4Z232X2Y2Z432XY3Z4112X2Y3Z264X2Y2Z316XY4Z2160X2Y2Z296XY4Z80XY3Z264XY2Z348XYZ416X2YZ2224XY3Z112XY2Z32XYZ2192XYZ16*X^2*Y^12*Z^8+56*X^4*Y^12*Z^4+16*X^4*Y^8*Z^8+32*X^4*Y^8*Z^6+40*X^2*Y^12*Z^4+16*X*Y^12*Z^4+80*X^4*Y^8*Z^4+168*X^2*Y^12*Z^2+32*X^2*Y^8*Z^6+40*X*Y^12*Z^2+16*X^2*Y^8*Z^4+24*X^2*Y^4*Z^8+112*X*Y^12*Z+32*X^2*Y^8*Z^3+8*X^4*Y^4*Z^4+136*X^2*Y^8*Z^2+32*X*Y^8*Z^3+16*X^2*Y^4*Z^4+56*X*Y^8*Z+24*X*Y^4*Z^4+104*X^2*Y^4*Z^2+32*X^2*Y^2*Z^4+32*X*Y^3*Z^4+112*X^2*Y^3*Z^2+64*X^2*Y^2*Z^3+16*X*Y^4*Z^2+160*X^2*Y^2*Z^2+96*X*Y^4*Z+80*X*Y^3*Z^2+64*X*Y^2*Z^3+48*X*Y*Z^4+16*X^2*Y*Z^2+224*X*Y^3*Z+112*X*Y^2*Z+32*X*Y*Z^2+192*X*Y*Z

Algorithm definition

The algorithm ⟨8×15×32:2336⟩ is the (Kronecker) tensor product of ⟨2×5×4:32⟩ with ⟨4×3×8:73⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table