Description of fast matrix multiplication algorithm: ⟨8×15×28:2128⟩

Algorithm type

40X4Y6Z4+15XY12Z+12X2Y9Z2+100X4Y4Z4+50X2Y8Z2+8X2Y6Z4+12X6Y3Z2+8X4Y3Z4+8X2Y3Z6+33XY9Z+10XY8Z2+30X6Y2Z2+20X4Y2Z4+144X2Y6Z2+20X2Y4Z4+20X2Y2Z6+5XY8Z+4X4Y3Z2+44X2Y3Z4+22XY6Z2+10X4Y2Z2+15X3Y4Z+90X2Y4Z2+110X2Y2Z4+32XY6Z+10XY4Z3+33X3Y3Z+5X2Y4Z+34X2Y3Z2+69XY4Z2+22XY3Z3+21X3Y2Z+11X2Y3Z+234X2Y2Z2+22XY4Z+121XY3Z2+14XY2Z3+57X3YZ+7X2Y2Z+38X2YZ2+90XY3Z+115XY2Z2+38XYZ3+19X2YZ+40XY2Z+209XYZ2+57XYZ40X4Y6Z415XY12Z12X2Y9Z2100X4Y4Z450X2Y8Z28X2Y6Z412X6Y3Z28X4Y3Z48X2Y3Z633XY9Z10XY8Z230X6Y2Z220X4Y2Z4144X2Y6Z220X2Y4Z420X2Y2Z65XY8Z4X4Y3Z244X2Y3Z422XY6Z210X4Y2Z215X3Y4Z90X2Y4Z2110X2Y2Z432XY6Z10XY4Z333X3Y3Z5X2Y4Z34X2Y3Z269XY4Z222XY3Z321X3Y2Z11X2Y3Z234X2Y2Z222XY4Z121XY3Z214XY2Z357X3YZ7X2Y2Z38X2YZ290XY3Z115XY2Z238XYZ319X2YZ40XY2Z209XYZ257XYZ40*X^4*Y^6*Z^4+15*X*Y^12*Z+12*X^2*Y^9*Z^2+100*X^4*Y^4*Z^4+50*X^2*Y^8*Z^2+8*X^2*Y^6*Z^4+12*X^6*Y^3*Z^2+8*X^4*Y^3*Z^4+8*X^2*Y^3*Z^6+33*X*Y^9*Z+10*X*Y^8*Z^2+30*X^6*Y^2*Z^2+20*X^4*Y^2*Z^4+144*X^2*Y^6*Z^2+20*X^2*Y^4*Z^4+20*X^2*Y^2*Z^6+5*X*Y^8*Z+4*X^4*Y^3*Z^2+44*X^2*Y^3*Z^4+22*X*Y^6*Z^2+10*X^4*Y^2*Z^2+15*X^3*Y^4*Z+90*X^2*Y^4*Z^2+110*X^2*Y^2*Z^4+32*X*Y^6*Z+10*X*Y^4*Z^3+33*X^3*Y^3*Z+5*X^2*Y^4*Z+34*X^2*Y^3*Z^2+69*X*Y^4*Z^2+22*X*Y^3*Z^3+21*X^3*Y^2*Z+11*X^2*Y^3*Z+234*X^2*Y^2*Z^2+22*X*Y^4*Z+121*X*Y^3*Z^2+14*X*Y^2*Z^3+57*X^3*Y*Z+7*X^2*Y^2*Z+38*X^2*Y*Z^2+90*X*Y^3*Z+115*X*Y^2*Z^2+38*X*Y*Z^3+19*X^2*Y*Z+40*X*Y^2*Z+209*X*Y*Z^2+57*X*Y*Z

Algorithm definition

The algorithm ⟨8×15×28:2128⟩ is the (Kronecker) tensor product of ⟨2×5×7:56⟩ with ⟨4×3×4:38⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table