Description of fast matrix multiplication algorithm: ⟨8×15×24:1824⟩

Algorithm type

3XY15Z+10X4Y8Z4+3X2Y12Z2+50X4Y6Z4+10X2Y10Z2+2X2Y8Z4+18XY12Z+15X2Y9Z2+2XY10Z2+3X6Y4Z2+62X4Y4Z4+61X2Y8Z2+10X2Y6Z4+2X2Y4Z6+XY10Z+15X6Y3Z2+10X4Y3Z4+10X2Y3Z6+24XY9Z+12XY8Z2+18X6Y2Z2+X4Y4Z2+12X4Y2Z4+103X2Y6Z2+23X2Y4Z4+12X2Y2Z6+6XY8Z+5X4Y3Z2+3X3Y5Z+2X2Y5Z2+55X2Y3Z4+16XY6Z2+2XY5Z3+6X4Y2Z2+18X3Y4Z+X2Y5Z+101X2Y4Z2+66X2Y2Z4+32XY6Z+11XY5Z2+12XY4Z3+24X3Y3Z+6X2Y4Z+31X2Y3Z2+3XY5Z+82XY4Z2+16XY3Z3+24X3Y2Z+8X2Y3Z+164X2Y2Z2+26XY4Z+88XY3Z2+16XY2Z3+39X3YZ+8X2Y2Z+26X2YZ2+63XY3Z+114XY2Z2+26XYZ3+13X2YZ+37XY2Z+143XYZ2+39XYZ3XY15Z10X4Y8Z43X2Y12Z250X4Y6Z410X2Y10Z22X2Y8Z418XY12Z15X2Y9Z22XY10Z23X6Y4Z262X4Y4Z461X2Y8Z210X2Y6Z42X2Y4Z6XY10Z15X6Y3Z210X4Y3Z410X2Y3Z624XY9Z12XY8Z218X6Y2Z2X4Y4Z212X4Y2Z4103X2Y6Z223X2Y4Z412X2Y2Z66XY8Z5X4Y3Z23X3Y5Z2X2Y5Z255X2Y3Z416XY6Z22XY5Z36X4Y2Z218X3Y4ZX2Y5Z101X2Y4Z266X2Y2Z432XY6Z11XY5Z212XY4Z324X3Y3Z6X2Y4Z31X2Y3Z23XY5Z82XY4Z216XY3Z324X3Y2Z8X2Y3Z164X2Y2Z226XY4Z88XY3Z216XY2Z339X3YZ8X2Y2Z26X2YZ263XY3Z114XY2Z226XYZ313X2YZ37XY2Z143XYZ239XYZ3*X*Y^15*Z+10*X^4*Y^8*Z^4+3*X^2*Y^12*Z^2+50*X^4*Y^6*Z^4+10*X^2*Y^10*Z^2+2*X^2*Y^8*Z^4+18*X*Y^12*Z+15*X^2*Y^9*Z^2+2*X*Y^10*Z^2+3*X^6*Y^4*Z^2+62*X^4*Y^4*Z^4+61*X^2*Y^8*Z^2+10*X^2*Y^6*Z^4+2*X^2*Y^4*Z^6+X*Y^10*Z+15*X^6*Y^3*Z^2+10*X^4*Y^3*Z^4+10*X^2*Y^3*Z^6+24*X*Y^9*Z+12*X*Y^8*Z^2+18*X^6*Y^2*Z^2+X^4*Y^4*Z^2+12*X^4*Y^2*Z^4+103*X^2*Y^6*Z^2+23*X^2*Y^4*Z^4+12*X^2*Y^2*Z^6+6*X*Y^8*Z+5*X^4*Y^3*Z^2+3*X^3*Y^5*Z+2*X^2*Y^5*Z^2+55*X^2*Y^3*Z^4+16*X*Y^6*Z^2+2*X*Y^5*Z^3+6*X^4*Y^2*Z^2+18*X^3*Y^4*Z+X^2*Y^5*Z+101*X^2*Y^4*Z^2+66*X^2*Y^2*Z^4+32*X*Y^6*Z+11*X*Y^5*Z^2+12*X*Y^4*Z^3+24*X^3*Y^3*Z+6*X^2*Y^4*Z+31*X^2*Y^3*Z^2+3*X*Y^5*Z+82*X*Y^4*Z^2+16*X*Y^3*Z^3+24*X^3*Y^2*Z+8*X^2*Y^3*Z+164*X^2*Y^2*Z^2+26*X*Y^4*Z+88*X*Y^3*Z^2+16*X*Y^2*Z^3+39*X^3*Y*Z+8*X^2*Y^2*Z+26*X^2*Y*Z^2+63*X*Y^3*Z+114*X*Y^2*Z^2+26*X*Y*Z^3+13*X^2*Y*Z+37*X*Y^2*Z+143*X*Y*Z^2+39*X*Y*Z

Algorithm definition

The algorithm ⟨8×15×24:1824⟩ is the (Kronecker) tensor product of ⟨2×5×6:48⟩ with ⟨4×3×4:38⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table