Description of fast matrix multiplication algorithm: ⟨8×14×25:1760⟩

Algorithm type

16X4Y10Z8+16X4Y8Z8+8X4Y6Z8+80X4Y4Z8+48X2Y10Z4+16X2Y5Z8+8X4Y2Z8+56X2Y8Z4+16X2Y4Z8+8X2Y3Z8+32X2Y6Z4+80X2Y2Z8+8X2YZ8+16X4Y2Z4+48X2Y4Z4+48XY5Z4+32X2Y5Z2+56XY4Z4+32X2Y4Z2+112X2Y2Z4+32XY3Z4+16X2Y3Z2+16X2YZ4+96XY5Z+48XY2Z4+160X2Y2Z2+112XY4Z+112XYZ4+16X2YZ2+64XY3Z+32X2YZ+96XY2Z+224XYZ16X4Y10Z816X4Y8Z88X4Y6Z880X4Y4Z848X2Y10Z416X2Y5Z88X4Y2Z856X2Y8Z416X2Y4Z88X2Y3Z832X2Y6Z480X2Y2Z88X2YZ816X4Y2Z448X2Y4Z448XY5Z432X2Y5Z256XY4Z432X2Y4Z2112X2Y2Z432XY3Z416X2Y3Z216X2YZ496XY5Z48XY2Z4160X2Y2Z2112XY4Z112XYZ416X2YZ264XY3Z32X2YZ96XY2Z224XYZ16*X^4*Y^10*Z^8+16*X^4*Y^8*Z^8+8*X^4*Y^6*Z^8+80*X^4*Y^4*Z^8+48*X^2*Y^10*Z^4+16*X^2*Y^5*Z^8+8*X^4*Y^2*Z^8+56*X^2*Y^8*Z^4+16*X^2*Y^4*Z^8+8*X^2*Y^3*Z^8+32*X^2*Y^6*Z^4+80*X^2*Y^2*Z^8+8*X^2*Y*Z^8+16*X^4*Y^2*Z^4+48*X^2*Y^4*Z^4+48*X*Y^5*Z^4+32*X^2*Y^5*Z^2+56*X*Y^4*Z^4+32*X^2*Y^4*Z^2+112*X^2*Y^2*Z^4+32*X*Y^3*Z^4+16*X^2*Y^3*Z^2+16*X^2*Y*Z^4+96*X*Y^5*Z+48*X*Y^2*Z^4+160*X^2*Y^2*Z^2+112*X*Y^4*Z+112*X*Y*Z^4+16*X^2*Y*Z^2+64*X*Y^3*Z+32*X^2*Y*Z+96*X*Y^2*Z+224*X*Y*Z

Algorithm definition

The algorithm ⟨8×14×25:1760⟩ is the (Kronecker) tensor product of ⟨2×7×5:55⟩ with ⟨4×2×5:32⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table