Description of fast matrix multiplication algorithm: ⟨8×14×20:1421⟩

Algorithm type

8X8Y14Z8+8X4Y14Z4+24X4Y8Z4+48X4Y7Z4+29X4Y4Z4+24X2Y8Z2+48X2Y7Z2+2X4Y2Z4+6X2Y6Z2+162X2Y4Z2+258X2Y2Z2+144XY4Z+12X2YZ2+36XY3Z+108XY2Z+504XYZ8X8Y14Z88X4Y14Z424X4Y8Z448X4Y7Z429X4Y4Z424X2Y8Z248X2Y7Z22X4Y2Z46X2Y6Z2162X2Y4Z2258X2Y2Z2144XY4Z12X2YZ236XY3Z108XY2Z504XYZ8*X^8*Y^14*Z^8+8*X^4*Y^14*Z^4+24*X^4*Y^8*Z^4+48*X^4*Y^7*Z^4+29*X^4*Y^4*Z^4+24*X^2*Y^8*Z^2+48*X^2*Y^7*Z^2+2*X^4*Y^2*Z^4+6*X^2*Y^6*Z^2+162*X^2*Y^4*Z^2+258*X^2*Y^2*Z^2+144*X*Y^4*Z+12*X^2*Y*Z^2+36*X*Y^3*Z+108*X*Y^2*Z+504*X*Y*Z

Algorithm definition

The algorithm ⟨8×14×20:1421⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨4×7×10:203⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table