Description of fast matrix multiplication algorithm: ⟨8×14×14:1029⟩

Algorithm type

3X8Y8Z8+X8Y4Z8+2X4Y10Z4+2X6Y4Z6+4X4Y8Z4+51X4Y4Z4+10X4Y2Z4+18X2Y6Z2+12X2Y5Z2+12X3Y2Z3+40X2Y4Z2+262X2Y2Z2+24X2YZ2+108XY3Z+96XY2Z+384XYZ3X8Y8Z8X8Y4Z82X4Y10Z42X6Y4Z64X4Y8Z451X4Y4Z410X4Y2Z418X2Y6Z212X2Y5Z212X3Y2Z340X2Y4Z2262X2Y2Z224X2YZ2108XY3Z96XY2Z384XYZ3*X^8*Y^8*Z^8+X^8*Y^4*Z^8+2*X^4*Y^10*Z^4+2*X^6*Y^4*Z^6+4*X^4*Y^8*Z^4+51*X^4*Y^4*Z^4+10*X^4*Y^2*Z^4+18*X^2*Y^6*Z^2+12*X^2*Y^5*Z^2+12*X^3*Y^2*Z^3+40*X^2*Y^4*Z^2+262*X^2*Y^2*Z^2+24*X^2*Y*Z^2+108*X*Y^3*Z+96*X*Y^2*Z+384*X*Y*Z

Algorithm definition

The algorithm ⟨8×14×14:1029⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨4×7×7:147⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table