Description of fast matrix multiplication algorithm: ⟨8×14×14:1008⟩

Algorithm type

X4Y10Z2+2X4Y8Z2+8X4Y6Z4+X4Y6Z2+44X4Y4Z4+X2Y8Z2+X2Y6Z4+X4Y4Z2+X4Y2Z4+6X2Y6Z2+X2Y4Z4+X2Y2Z6+12X4Y2Z2+6X2Y5Z+21X2Y4Z2+13X2Y2Z4+12X2Y4Z+48X2Y3Z2+6X2Y3Z+294X2Y2Z2+6XY4Z+6XY3Z2+6X2Y2Z+6X2YZ2+36XY3Z+6XY2Z2+6XYZ3+72X2YZ+126XY2Z+78XYZ2+180XYZX4Y10Z22X4Y8Z28X4Y6Z4X4Y6Z244X4Y4Z4X2Y8Z2X2Y6Z4X4Y4Z2X4Y2Z46X2Y6Z2X2Y4Z4X2Y2Z612X4Y2Z26X2Y5Z21X2Y4Z213X2Y2Z412X2Y4Z48X2Y3Z26X2Y3Z294X2Y2Z26XY4Z6XY3Z26X2Y2Z6X2YZ236XY3Z6XY2Z26XYZ372X2YZ126XY2Z78XYZ2180XYZX^4*Y^10*Z^2+2*X^4*Y^8*Z^2+8*X^4*Y^6*Z^4+X^4*Y^6*Z^2+44*X^4*Y^4*Z^4+X^2*Y^8*Z^2+X^2*Y^6*Z^4+X^4*Y^4*Z^2+X^4*Y^2*Z^4+6*X^2*Y^6*Z^2+X^2*Y^4*Z^4+X^2*Y^2*Z^6+12*X^4*Y^2*Z^2+6*X^2*Y^5*Z+21*X^2*Y^4*Z^2+13*X^2*Y^2*Z^4+12*X^2*Y^4*Z+48*X^2*Y^3*Z^2+6*X^2*Y^3*Z+294*X^2*Y^2*Z^2+6*X*Y^4*Z+6*X*Y^3*Z^2+6*X^2*Y^2*Z+6*X^2*Y*Z^2+36*X*Y^3*Z+6*X*Y^2*Z^2+6*X*Y*Z^3+72*X^2*Y*Z+126*X*Y^2*Z+78*X*Y*Z^2+180*X*Y*Z

Algorithm definition

The algorithm ⟨8×14×14:1008⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨4×7×7:144⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table