Description of fast matrix multiplication algorithm: ⟨8×12×15:915⟩

Algorithm type

18X6Y4Z4+3X4Y4Z6+3X2Y4Z8+6X6Y4Z2+27X4Y4Z4+6X4Y2Z6+3X2Y4Z6+24X6Y2Z2+12X4Y2Z4+6X2Y6Z2+12X2Y4Z4+36X3Y4Z2+6X2Y4Z3+6XY4Z4+30X4Y2Z2+12X3Y4Z+60X2Y4Z2+12XY6Z+6XY4Z3+36X3Y2Z2+18X2Y2Z3+24XY4Z2+6XY2Z4+60X3Y2Z+105X2Y2Z2+12X2YZ3+12XY4Z+6XY2Z3+48X3YZ+60X2Y2Z+24X2YZ2+12XY3Z+24XY2Z2+60X2YZ+66XY2Z+54XYZ18X6Y4Z43X4Y4Z63X2Y4Z86X6Y4Z227X4Y4Z46X4Y2Z63X2Y4Z624X6Y2Z212X4Y2Z46X2Y6Z212X2Y4Z436X3Y4Z26X2Y4Z36XY4Z430X4Y2Z212X3Y4Z60X2Y4Z212XY6Z6XY4Z336X3Y2Z218X2Y2Z324XY4Z26XY2Z460X3Y2Z105X2Y2Z212X2YZ312XY4Z6XY2Z348X3YZ60X2Y2Z24X2YZ212XY3Z24XY2Z260X2YZ66XY2Z54XYZ18*X^6*Y^4*Z^4+3*X^4*Y^4*Z^6+3*X^2*Y^4*Z^8+6*X^6*Y^4*Z^2+27*X^4*Y^4*Z^4+6*X^4*Y^2*Z^6+3*X^2*Y^4*Z^6+24*X^6*Y^2*Z^2+12*X^4*Y^2*Z^4+6*X^2*Y^6*Z^2+12*X^2*Y^4*Z^4+36*X^3*Y^4*Z^2+6*X^2*Y^4*Z^3+6*X*Y^4*Z^4+30*X^4*Y^2*Z^2+12*X^3*Y^4*Z+60*X^2*Y^4*Z^2+12*X*Y^6*Z+6*X*Y^4*Z^3+36*X^3*Y^2*Z^2+18*X^2*Y^2*Z^3+24*X*Y^4*Z^2+6*X*Y^2*Z^4+60*X^3*Y^2*Z+105*X^2*Y^2*Z^2+12*X^2*Y*Z^3+12*X*Y^4*Z+6*X*Y^2*Z^3+48*X^3*Y*Z+60*X^2*Y^2*Z+24*X^2*Y*Z^2+12*X*Y^3*Z+24*X*Y^2*Z^2+60*X^2*Y*Z+66*X*Y^2*Z+54*X*Y*Z

Algorithm definition

The algorithm ⟨8×12×15:915⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨4×4×5:61⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table