Description of fast matrix multiplication algorithm: ⟨8×11×29:1622⟩

Algorithm type

4X6Y8Z6+4X6Y7Z6+4X5Y7Z6+8X3Y8Z3+8X3Y7Z3+70X4Y4Z4+4X2Y8Z2+10X4Y3Z4+10X3Y4Z4+8X2Y7Z2+16X3Y4Z3+6X3Y3Z4+8XY8Z+3X7YZ+X5Y2Z2+4X2Y4Z3+8XY7Z+4X6YZ+5X4Y2Z2+154X2Y4Z2+2XY6Z+12X5YZ+12X3Y2Z2+16X2Y3Z2+4X2Y2Z3+8X4YZ+4X3Y2Z+374X2Y2Z2+44XY4Z+4XY2Z3+14X3YZ+8X2Y2Z+8X2YZ2+2XY3Z+26XY2Z2+4XYZ3+22X2YZ+332XY2Z+22XYZ2+365XYZ4X6Y8Z64X6Y7Z64X5Y7Z68X3Y8Z38X3Y7Z370X4Y4Z44X2Y8Z210X4Y3Z410X3Y4Z48X2Y7Z216X3Y4Z36X3Y3Z48XY8Z3X7YZX5Y2Z24X2Y4Z38XY7Z4X6YZ5X4Y2Z2154X2Y4Z22XY6Z12X5YZ12X3Y2Z216X2Y3Z24X2Y2Z38X4YZ4X3Y2Z374X2Y2Z244XY4Z4XY2Z314X3YZ8X2Y2Z8X2YZ22XY3Z26XY2Z24XYZ322X2YZ332XY2Z22XYZ2365XYZ4*X^6*Y^8*Z^6+4*X^6*Y^7*Z^6+4*X^5*Y^7*Z^6+8*X^3*Y^8*Z^3+8*X^3*Y^7*Z^3+70*X^4*Y^4*Z^4+4*X^2*Y^8*Z^2+10*X^4*Y^3*Z^4+10*X^3*Y^4*Z^4+8*X^2*Y^7*Z^2+16*X^3*Y^4*Z^3+6*X^3*Y^3*Z^4+8*X*Y^8*Z+3*X^7*Y*Z+X^5*Y^2*Z^2+4*X^2*Y^4*Z^3+8*X*Y^7*Z+4*X^6*Y*Z+5*X^4*Y^2*Z^2+154*X^2*Y^4*Z^2+2*X*Y^6*Z+12*X^5*Y*Z+12*X^3*Y^2*Z^2+16*X^2*Y^3*Z^2+4*X^2*Y^2*Z^3+8*X^4*Y*Z+4*X^3*Y^2*Z+374*X^2*Y^2*Z^2+44*X*Y^4*Z+4*X*Y^2*Z^3+14*X^3*Y*Z+8*X^2*Y^2*Z+8*X^2*Y*Z^2+2*X*Y^3*Z+26*X*Y^2*Z^2+4*X*Y*Z^3+22*X^2*Y*Z+332*X*Y^2*Z+22*X*Y*Z^2+365*X*Y*Z

Algorithm definition

The algorithm ⟨8×11×29:1622⟩ could be constructed using the following decomposition:

⟨8×11×29:1622⟩ = ⟨8×11×2:138⟩ + ⟨8×11×27:1484⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_1_10A_1_11A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_2_10A_2_11A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_3_10A_3_11A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_4_10A_4_11A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_5_10A_5_11A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9A_6_10A_6_11A_7_1A_7_2A_7_3A_7_4A_7_5A_7_6A_7_7A_7_8A_7_9A_7_10A_7_11A_8_1A_8_2A_8_3A_8_4A_8_5A_8_6A_8_7A_8_8A_8_9A_8_10A_8_11B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_1_18B_1_19B_1_20B_1_21B_1_22B_1_23B_1_24B_1_25B_1_26B_1_27B_1_28B_1_29B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_2_18B_2_19B_2_20B_2_21B_2_22B_2_23B_2_24B_2_25B_2_26B_2_27B_2_28B_2_29B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_3_18B_3_19B_3_20B_3_21B_3_22B_3_23B_3_24B_3_25B_3_26B_3_27B_3_28B_3_29B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_4_15B_4_16B_4_17B_4_18B_4_19B_4_20B_4_21B_4_22B_4_23B_4_24B_4_25B_4_26B_4_27B_4_28B_4_29B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_5_15B_5_16B_5_17B_5_18B_5_19B_5_20B_5_21B_5_22B_5_23B_5_24B_5_25B_5_26B_5_27B_5_28B_5_29B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_6_15B_6_16B_6_17B_6_18B_6_19B_6_20B_6_21B_6_22B_6_23B_6_24B_6_25B_6_26B_6_27B_6_28B_6_29B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_7_15B_7_16B_7_17B_7_18B_7_19B_7_20B_7_21B_7_22B_7_23B_7_24B_7_25B_7_26B_7_27B_7_28B_7_29B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14B_8_15B_8_16B_8_17B_8_18B_8_19B_8_20B_8_21B_8_22B_8_23B_8_24B_8_25B_8_26B_8_27B_8_28B_8_29B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_9_12B_9_13B_9_14B_9_15B_9_16B_9_17B_9_18B_9_19B_9_20B_9_21B_9_22B_9_23B_9_24B_9_25B_9_26B_9_27B_9_28B_9_29B_10_1B_10_2B_10_3B_10_4B_10_5B_10_6B_10_7B_10_8B_10_9B_10_10B_10_11B_10_12B_10_13B_10_14B_10_15B_10_16B_10_17B_10_18B_10_19B_10_20B_10_21B_10_22B_10_23B_10_24B_10_25B_10_26B_10_27B_10_28B_10_29B_11_1B_11_2B_11_3B_11_4B_11_5B_11_6B_11_7B_11_8B_11_9B_11_10B_11_11B_11_12B_11_13B_11_14B_11_15B_11_16B_11_17B_11_18B_11_19B_11_20B_11_21B_11_22B_11_23B_11_24B_11_25B_11_26B_11_27B_11_28B_11_29C_1_1C_1_2C_1_3C_1_4C_1_5C_1_6C_1_7C_1_8C_2_1C_2_2C_2_3C_2_4C_2_5C_2_6C_2_7C_2_8C_3_1C_3_2C_3_3C_3_4C_3_5C_3_6C_3_7C_3_8C_4_1C_4_2C_4_3C_4_4C_4_5C_4_6C_4_7C_4_8C_5_1C_5_2C_5_3C_5_4C_5_5C_5_6C_5_7C_5_8C_6_1C_6_2C_6_3C_6_4C_6_5C_6_6C_6_7C_6_8C_7_1C_7_2C_7_3C_7_4C_7_5C_7_6C_7_7C_7_8C_8_1C_8_2C_8_3C_8_4C_8_5C_8_6C_8_7C_8_8C_9_1C_9_2C_9_3C_9_4C_9_5C_9_6C_9_7C_9_8C_10_1C_10_2C_10_3C_10_4C_10_5C_10_6C_10_7C_10_8C_11_1C_11_2C_11_3C_11_4C_11_5C_11_6C_11_7C_11_8C_12_1C_12_2C_12_3C_12_4C_12_5C_12_6C_12_7C_12_8C_13_1C_13_2C_13_3C_13_4C_13_5C_13_6C_13_7C_13_8C_14_1C_14_2C_14_3C_14_4C_14_5C_14_6C_14_7C_14_8C_15_1C_15_2C_15_3C_15_4C_15_5C_15_6C_15_7C_15_8C_16_1C_16_2C_16_3C_16_4C_16_5C_16_6C_16_7C_16_8C_17_1C_17_2C_17_3C_17_4C_17_5C_17_6C_17_7C_17_8C_18_1C_18_2C_18_3C_18_4C_18_5C_18_6C_18_7C_18_8C_19_1C_19_2C_19_3C_19_4C_19_5C_19_6C_19_7C_19_8C_20_1C_20_2C_20_3C_20_4C_20_5C_20_6C_20_7C_20_8C_21_1C_21_2C_21_3C_21_4C_21_5C_21_6C_21_7C_21_8C_22_1C_22_2C_22_3C_22_4C_22_5C_22_6C_22_7C_22_8C_23_1C_23_2C_23_3C_23_4C_23_5C_23_6C_23_7C_23_8C_24_1C_24_2C_24_3C_24_4C_24_5C_24_6C_24_7C_24_8C_25_1C_25_2C_25_3C_25_4C_25_5C_25_6C_25_7C_25_8C_26_1C_26_2C_26_3C_26_4C_26_5C_26_6C_26_7C_26_8C_27_1C_27_2C_27_3C_27_4C_27_5C_27_6C_27_7C_27_8C_28_1C_28_2C_28_3C_28_4C_28_5C_28_6C_28_7C_28_8C_29_1C_29_2C_29_3C_29_4C_29_5C_29_6C_29_7C_29_8=TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_1_10A_1_11A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_2_10A_2_11A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_3_10A_3_11A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_4_10A_4_11A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_5_10A_5_11A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9A_6_10A_6_11A_7_1A_7_2A_7_3A_7_4A_7_5A_7_6A_7_7A_7_8A_7_9A_7_10A_7_11A_8_1A_8_2A_8_3A_8_4A_8_5A_8_6A_8_7A_8_8A_8_9A_8_10A_8_11B_1_1B_1_2B_2_1B_2_2B_3_1B_3_2B_4_1B_4_2B_5_1B_5_2B_6_1B_6_2B_7_1B_7_2B_8_1B_8_2B_9_1B_9_2B_10_1B_10_2B_11_1B_11_2C_1_1C_1_2C_1_3C_1_4C_1_5C_1_6C_1_7C_1_8C_2_1C_2_2C_2_3C_2_4C_2_5C_2_6C_2_7C_2_8+TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_1_10A_1_11A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_2_10A_2_11A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_3_10A_3_11A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_4_10A_4_11A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_5_10A_5_11A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9A_6_10A_6_11A_7_1A_7_2A_7_3A_7_4A_7_5A_7_6A_7_7A_7_8A_7_9A_7_10A_7_11A_8_1A_8_2A_8_3A_8_4A_8_5A_8_6A_8_7A_8_8A_8_9A_8_10A_8_11B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_1_18B_1_19B_1_20B_1_21B_1_22B_1_23B_1_24B_1_25B_1_26B_1_27B_1_28B_1_29B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_2_18B_2_19B_2_20B_2_21B_2_22B_2_23B_2_24B_2_25B_2_26B_2_27B_2_28B_2_29B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_3_18B_3_19B_3_20B_3_21B_3_22B_3_23B_3_24B_3_25B_3_26B_3_27B_3_28B_3_29B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_4_15B_4_16B_4_17B_4_18B_4_19B_4_20B_4_21B_4_22B_4_23B_4_24B_4_25B_4_26B_4_27B_4_28B_4_29B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_5_15B_5_16B_5_17B_5_18B_5_19B_5_20B_5_21B_5_22B_5_23B_5_24B_5_25B_5_26B_5_27B_5_28B_5_29B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_6_15B_6_16B_6_17B_6_18B_6_19B_6_20B_6_21B_6_22B_6_23B_6_24B_6_25B_6_26B_6_27B_6_28B_6_29B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_7_15B_7_16B_7_17B_7_18B_7_19B_7_20B_7_21B_7_22B_7_23B_7_24B_7_25B_7_26B_7_27B_7_28B_7_29B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14B_8_15B_8_16B_8_17B_8_18B_8_19B_8_20B_8_21B_8_22B_8_23B_8_24B_8_25B_8_26B_8_27B_8_28B_8_29B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_9_12B_9_13B_9_14B_9_15B_9_16B_9_17B_9_18B_9_19B_9_20B_9_21B_9_22B_9_23B_9_24B_9_25B_9_26B_9_27B_9_28B_9_29B_10_3B_10_4B_10_5B_10_6B_10_7B_10_8B_10_9B_10_10B_10_11B_10_12B_10_13B_10_14B_10_15B_10_16B_10_17B_10_18B_10_19B_10_20B_10_21B_10_22B_10_23B_10_24B_10_25B_10_26B_10_27B_10_28B_10_29B_11_3B_11_4B_11_5B_11_6B_11_7B_11_8B_11_9B_11_10B_11_11B_11_12B_11_13B_11_14B_11_15B_11_16B_11_17B_11_18B_11_19B_11_20B_11_21B_11_22B_11_23B_11_24B_11_25B_11_26B_11_27B_11_28B_11_29C_3_1C_3_2C_3_3C_3_4C_3_5C_3_6C_3_7C_3_8C_4_1C_4_2C_4_3C_4_4C_4_5C_4_6C_4_7C_4_8C_5_1C_5_2C_5_3C_5_4C_5_5C_5_6C_5_7C_5_8C_6_1C_6_2C_6_3C_6_4C_6_5C_6_6C_6_7C_6_8C_7_1C_7_2C_7_3C_7_4C_7_5C_7_6C_7_7C_7_8C_8_1C_8_2C_8_3C_8_4C_8_5C_8_6C_8_7C_8_8C_9_1C_9_2C_9_3C_9_4C_9_5C_9_6C_9_7C_9_8C_10_1C_10_2C_10_3C_10_4C_10_5C_10_6C_10_7C_10_8C_11_1C_11_2C_11_3C_11_4C_11_5C_11_6C_11_7C_11_8C_12_1C_12_2C_12_3C_12_4C_12_5C_12_6C_12_7C_12_8C_13_1C_13_2C_13_3C_13_4C_13_5C_13_6C_13_7C_13_8C_14_1C_14_2C_14_3C_14_4C_14_5C_14_6C_14_7C_14_8C_15_1C_15_2C_15_3C_15_4C_15_5C_15_6C_15_7C_15_8C_16_1C_16_2C_16_3C_16_4C_16_5C_16_6C_16_7C_16_8C_17_1C_17_2C_17_3C_17_4C_17_5C_17_6C_17_7C_17_8C_18_1C_18_2C_18_3C_18_4C_18_5C_18_6C_18_7C_18_8C_19_1C_19_2C_19_3C_19_4C_19_5C_19_6C_19_7C_19_8C_20_1C_20_2C_20_3C_20_4C_20_5C_20_6C_20_7C_20_8C_21_1C_21_2C_21_3C_21_4C_21_5C_21_6C_21_7C_21_8C_22_1C_22_2C_22_3C_22_4C_22_5C_22_6C_22_7C_22_8C_23_1C_23_2C_23_3C_23_4C_23_5C_23_6C_23_7C_23_8C_24_1C_24_2C_24_3C_24_4C_24_5C_24_6C_24_7C_24_8C_25_1C_25_2C_25_3C_25_4C_25_5C_25_6C_25_7C_25_8C_26_1C_26_2C_26_3C_26_4C_26_5C_26_6C_26_7C_26_8C_27_1C_27_2C_27_3C_27_4C_27_5C_27_6C_27_7C_27_8C_28_1C_28_2C_28_3C_28_4C_28_5C_28_6C_28_7C_28_8C_29_1C_29_2C_29_3C_29_4C_29_5C_29_6C_29_7C_29_8TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_1_10A_1_11A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_2_10A_2_11A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_3_10A_3_11A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_4_10A_4_11A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_5_10A_5_11A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9A_6_10A_6_11A_7_1A_7_2A_7_3A_7_4A_7_5A_7_6A_7_7A_7_8A_7_9A_7_10A_7_11A_8_1A_8_2A_8_3A_8_4A_8_5A_8_6A_8_7A_8_8A_8_9A_8_10A_8_11B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_1_18B_1_19B_1_20B_1_21B_1_22B_1_23B_1_24B_1_25B_1_26B_1_27B_1_28B_1_29B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_2_18B_2_19B_2_20B_2_21B_2_22B_2_23B_2_24B_2_25B_2_26B_2_27B_2_28B_2_29B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_3_18B_3_19B_3_20B_3_21B_3_22B_3_23B_3_24B_3_25B_3_26B_3_27B_3_28B_3_29B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_4_15B_4_16B_4_17B_4_18B_4_19B_4_20B_4_21B_4_22B_4_23B_4_24B_4_25B_4_26B_4_27B_4_28B_4_29B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_5_15B_5_16B_5_17B_5_18B_5_19B_5_20B_5_21B_5_22B_5_23B_5_24B_5_25B_5_26B_5_27B_5_28B_5_29B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_6_15B_6_16B_6_17B_6_18B_6_19B_6_20B_6_21B_6_22B_6_23B_6_24B_6_25B_6_26B_6_27B_6_28B_6_29B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_7_15B_7_16B_7_17B_7_18B_7_19B_7_20B_7_21B_7_22B_7_23B_7_24B_7_25B_7_26B_7_27B_7_28B_7_29B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14B_8_15B_8_16B_8_17B_8_18B_8_19B_8_20B_8_21B_8_22B_8_23B_8_24B_8_25B_8_26B_8_27B_8_28B_8_29B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_9_12B_9_13B_9_14B_9_15B_9_16B_9_17B_9_18B_9_19B_9_20B_9_21B_9_22B_9_23B_9_24B_9_25B_9_26B_9_27B_9_28B_9_29B_10_1B_10_2B_10_3B_10_4B_10_5B_10_6B_10_7B_10_8B_10_9B_10_10B_10_11B_10_12B_10_13B_10_14B_10_15B_10_16B_10_17B_10_18B_10_19B_10_20B_10_21B_10_22B_10_23B_10_24B_10_25B_10_26B_10_27B_10_28B_10_29B_11_1B_11_2B_11_3B_11_4B_11_5B_11_6B_11_7B_11_8B_11_9B_11_10B_11_11B_11_12B_11_13B_11_14B_11_15B_11_16B_11_17B_11_18B_11_19B_11_20B_11_21B_11_22B_11_23B_11_24B_11_25B_11_26B_11_27B_11_28B_11_29C_1_1C_1_2C_1_3C_1_4C_1_5C_1_6C_1_7C_1_8C_2_1C_2_2C_2_3C_2_4C_2_5C_2_6C_2_7C_2_8C_3_1C_3_2C_3_3C_3_4C_3_5C_3_6C_3_7C_3_8C_4_1C_4_2C_4_3C_4_4C_4_5C_4_6C_4_7C_4_8C_5_1C_5_2C_5_3C_5_4C_5_5C_5_6C_5_7C_5_8C_6_1C_6_2C_6_3C_6_4C_6_5C_6_6C_6_7C_6_8C_7_1C_7_2C_7_3C_7_4C_7_5C_7_6C_7_7C_7_8C_8_1C_8_2C_8_3C_8_4C_8_5C_8_6C_8_7C_8_8C_9_1C_9_2C_9_3C_9_4C_9_5C_9_6C_9_7C_9_8C_10_1C_10_2C_10_3C_10_4C_10_5C_10_6C_10_7C_10_8C_11_1C_11_2C_11_3C_11_4C_11_5C_11_6C_11_7C_11_8C_12_1C_12_2C_12_3C_12_4C_12_5C_12_6C_12_7C_12_8C_13_1C_13_2C_13_3C_13_4C_13_5C_13_6C_13_7C_13_8C_14_1C_14_2C_14_3C_14_4C_14_5C_14_6C_14_7C_14_8C_15_1C_15_2C_15_3C_15_4C_15_5C_15_6C_15_7C_15_8C_16_1C_16_2C_16_3C_16_4C_16_5C_16_6C_16_7C_16_8C_17_1C_17_2C_17_3C_17_4C_17_5C_17_6C_17_7C_17_8C_18_1C_18_2C_18_3C_18_4C_18_5C_18_6C_18_7C_18_8C_19_1C_19_2C_19_3C_19_4C_19_5C_19_6C_19_7C_19_8C_20_1C_20_2C_20_3C_20_4C_20_5C_20_6C_20_7C_20_8C_21_1C_21_2C_21_3C_21_4C_21_5C_21_6C_21_7C_21_8C_22_1C_22_2C_22_3C_22_4C_22_5C_22_6C_22_7C_22_8C_23_1C_23_2C_23_3C_23_4C_23_5C_23_6C_23_7C_23_8C_24_1C_24_2C_24_3C_24_4C_24_5C_24_6C_24_7C_24_8C_25_1C_25_2C_25_3C_25_4C_25_5C_25_6C_25_7C_25_8C_26_1C_26_2C_26_3C_26_4C_26_5C_26_6C_26_7C_26_8C_27_1C_27_2C_27_3C_27_4C_27_5C_27_6C_27_7C_27_8C_28_1C_28_2C_28_3C_28_4C_28_5C_28_6C_28_7C_28_8C_29_1C_29_2C_29_3C_29_4C_29_5C_29_6C_29_7C_29_8TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_1_10A_1_11A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_2_10A_2_11A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_3_10A_3_11A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_4_10A_4_11A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_5_10A_5_11A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9A_6_10A_6_11A_7_1A_7_2A_7_3A_7_4A_7_5A_7_6A_7_7A_7_8A_7_9A_7_10A_7_11A_8_1A_8_2A_8_3A_8_4A_8_5A_8_6A_8_7A_8_8A_8_9A_8_10A_8_11B_1_1B_1_2B_2_1B_2_2B_3_1B_3_2B_4_1B_4_2B_5_1B_5_2B_6_1B_6_2B_7_1B_7_2B_8_1B_8_2B_9_1B_9_2B_10_1B_10_2B_11_1B_11_2C_1_1C_1_2C_1_3C_1_4C_1_5C_1_6C_1_7C_1_8C_2_1C_2_2C_2_3C_2_4C_2_5C_2_6C_2_7C_2_8TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_1_10A_1_11A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_2_10A_2_11A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_3_10A_3_11A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_4_10A_4_11A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_5_10A_5_11A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9A_6_10A_6_11A_7_1A_7_2A_7_3A_7_4A_7_5A_7_6A_7_7A_7_8A_7_9A_7_10A_7_11A_8_1A_8_2A_8_3A_8_4A_8_5A_8_6A_8_7A_8_8A_8_9A_8_10A_8_11B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_1_18B_1_19B_1_20B_1_21B_1_22B_1_23B_1_24B_1_25B_1_26B_1_27B_1_28B_1_29B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_2_18B_2_19B_2_20B_2_21B_2_22B_2_23B_2_24B_2_25B_2_26B_2_27B_2_28B_2_29B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_3_18B_3_19B_3_20B_3_21B_3_22B_3_23B_3_24B_3_25B_3_26B_3_27B_3_28B_3_29B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_4_15B_4_16B_4_17B_4_18B_4_19B_4_20B_4_21B_4_22B_4_23B_4_24B_4_25B_4_26B_4_27B_4_28B_4_29B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_5_15B_5_16B_5_17B_5_18B_5_19B_5_20B_5_21B_5_22B_5_23B_5_24B_5_25B_5_26B_5_27B_5_28B_5_29B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_6_15B_6_16B_6_17B_6_18B_6_19B_6_20B_6_21B_6_22B_6_23B_6_24B_6_25B_6_26B_6_27B_6_28B_6_29B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_7_15B_7_16B_7_17B_7_18B_7_19B_7_20B_7_21B_7_22B_7_23B_7_24B_7_25B_7_26B_7_27B_7_28B_7_29B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14B_8_15B_8_16B_8_17B_8_18B_8_19B_8_20B_8_21B_8_22B_8_23B_8_24B_8_25B_8_26B_8_27B_8_28B_8_29B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_9_12B_9_13B_9_14B_9_15B_9_16B_9_17B_9_18B_9_19B_9_20B_9_21B_9_22B_9_23B_9_24B_9_25B_9_26B_9_27B_9_28B_9_29B_10_3B_10_4B_10_5B_10_6B_10_7B_10_8B_10_9B_10_10B_10_11B_10_12B_10_13B_10_14B_10_15B_10_16B_10_17B_10_18B_10_19B_10_20B_10_21B_10_22B_10_23B_10_24B_10_25B_10_26B_10_27B_10_28B_10_29B_11_3B_11_4B_11_5B_11_6B_11_7B_11_8B_11_9B_11_10B_11_11B_11_12B_11_13B_11_14B_11_15B_11_16B_11_17B_11_18B_11_19B_11_20B_11_21B_11_22B_11_23B_11_24B_11_25B_11_26B_11_27B_11_28B_11_29C_3_1C_3_2C_3_3C_3_4C_3_5C_3_6C_3_7C_3_8C_4_1C_4_2C_4_3C_4_4C_4_5C_4_6C_4_7C_4_8C_5_1C_5_2C_5_3C_5_4C_5_5C_5_6C_5_7C_5_8C_6_1C_6_2C_6_3C_6_4C_6_5C_6_6C_6_7C_6_8C_7_1C_7_2C_7_3C_7_4C_7_5C_7_6C_7_7C_7_8C_8_1C_8_2C_8_3C_8_4C_8_5C_8_6C_8_7C_8_8C_9_1C_9_2C_9_3C_9_4C_9_5C_9_6C_9_7C_9_8C_10_1C_10_2C_10_3C_10_4C_10_5C_10_6C_10_7C_10_8C_11_1C_11_2C_11_3C_11_4C_11_5C_11_6C_11_7C_11_8C_12_1C_12_2C_12_3C_12_4C_12_5C_12_6C_12_7C_12_8C_13_1C_13_2C_13_3C_13_4C_13_5C_13_6C_13_7C_13_8C_14_1C_14_2C_14_3C_14_4C_14_5C_14_6C_14_7C_14_8C_15_1C_15_2C_15_3C_15_4C_15_5C_15_6C_15_7C_15_8C_16_1C_16_2C_16_3C_16_4C_16_5C_16_6C_16_7C_16_8C_17_1C_17_2C_17_3C_17_4C_17_5C_17_6C_17_7C_17_8C_18_1C_18_2C_18_3C_18_4C_18_5C_18_6C_18_7C_18_8C_19_1C_19_2C_19_3C_19_4C_19_5C_19_6C_19_7C_19_8C_20_1C_20_2C_20_3C_20_4C_20_5C_20_6C_20_7C_20_8C_21_1C_21_2C_21_3C_21_4C_21_5C_21_6C_21_7C_21_8C_22_1C_22_2C_22_3C_22_4C_22_5C_22_6C_22_7C_22_8C_23_1C_23_2C_23_3C_23_4C_23_5C_23_6C_23_7C_23_8C_24_1C_24_2C_24_3C_24_4C_24_5C_24_6C_24_7C_24_8C_25_1C_25_2C_25_3C_25_4C_25_5C_25_6C_25_7C_25_8C_26_1C_26_2C_26_3C_26_4C_26_5C_26_6C_26_7C_26_8C_27_1C_27_2C_27_3C_27_4C_27_5C_27_6C_27_7C_27_8C_28_1C_28_2C_28_3C_28_4C_28_5C_28_6C_28_7C_28_8C_29_1C_29_2C_29_3C_29_4C_29_5C_29_6C_29_7C_29_8Trace(Mul(Matrix(8, 11, [[A_1_1,A_1_2,A_1_3,A_1_4,A_1_5,A_1_6,A_1_7,A_1_8,A_1_9,A_1_10,A_1_11],[A_2_1,A_2_2,A_2_3,A_2_4,A_2_5,A_2_6,A_2_7,A_2_8,A_2_9,A_2_10,A_2_11],[A_3_1,A_3_2,A_3_3,A_3_4,A_3_5,A_3_6,A_3_7,A_3_8,A_3_9,A_3_10,A_3_11],[A_4_1,A_4_2,A_4_3,A_4_4,A_4_5,A_4_6,A_4_7,A_4_8,A_4_9,A_4_10,A_4_11],[A_5_1,A_5_2,A_5_3,A_5_4,A_5_5,A_5_6,A_5_7,A_5_8,A_5_9,A_5_10,A_5_11],[A_6_1,A_6_2,A_6_3,A_6_4,A_6_5,A_6_6,A_6_7,A_6_8,A_6_9,A_6_10,A_6_11],[A_7_1,A_7_2,A_7_3,A_7_4,A_7_5,A_7_6,A_7_7,A_7_8,A_7_9,A_7_10,A_7_11],[A_8_1,A_8_2,A_8_3,A_8_4,A_8_5,A_8_6,A_8_7,A_8_8,A_8_9,A_8_10,A_8_11]]),Matrix(11, 29, [[B_1_1,B_1_2,B_1_3,B_1_4,B_1_5,B_1_6,B_1_7,B_1_8,B_1_9,B_1_10,B_1_11,B_1_12,B_1_13,B_1_14,B_1_15,B_1_16,B_1_17,B_1_18,B_1_19,B_1_20,B_1_21,B_1_22,B_1_23,B_1_24,B_1_25,B_1_26,B_1_27,B_1_28,B_1_29],[B_2_1,B_2_2,B_2_3,B_2_4,B_2_5,B_2_6,B_2_7,B_2_8,B_2_9,B_2_10,B_2_11,B_2_12,B_2_13,B_2_14,B_2_15,B_2_16,B_2_17,B_2_18,B_2_19,B_2_20,B_2_21,B_2_22,B_2_23,B_2_24,B_2_25,B_2_26,B_2_27,B_2_28,B_2_29],[B_3_1,B_3_2,B_3_3,B_3_4,B_3_5,B_3_6,B_3_7,B_3_8,B_3_9,B_3_10,B_3_11,B_3_12,B_3_13,B_3_14,B_3_15,B_3_16,B_3_17,B_3_18,B_3_19,B_3_20,B_3_21,B_3_22,B_3_23,B_3_24,B_3_25,B_3_26,B_3_27,B_3_28,B_3_29],[B_4_1,B_4_2,B_4_3,B_4_4,B_4_5,B_4_6,B_4_7,B_4_8,B_4_9,B_4_10,B_4_11,B_4_12,B_4_13,B_4_14,B_4_15,B_4_16,B_4_17,B_4_18,B_4_19,B_4_20,B_4_21,B_4_22,B_4_23,B_4_24,B_4_25,B_4_26,B_4_27,B_4_28,B_4_29],[B_5_1,B_5_2,B_5_3,B_5_4,B_5_5,B_5_6,B_5_7,B_5_8,B_5_9,B_5_10,B_5_11,B_5_12,B_5_13,B_5_14,B_5_15,B_5_16,B_5_17,B_5_18,B_5_19,B_5_20,B_5_21,B_5_22,B_5_23,B_5_24,B_5_25,B_5_26,B_5_27,B_5_28,B_5_29],[B_6_1,B_6_2,B_6_3,B_6_4,B_6_5,B_6_6,B_6_7,B_6_8,B_6_9,B_6_10,B_6_11,B_6_12,B_6_13,B_6_14,B_6_15,B_6_16,B_6_17,B_6_18,B_6_19,B_6_20,B_6_21,B_6_22,B_6_23,B_6_24,B_6_25,B_6_26,B_6_27,B_6_28,B_6_29],[B_7_1,B_7_2,B_7_3,B_7_4,B_7_5,B_7_6,B_7_7,B_7_8,B_7_9,B_7_10,B_7_11,B_7_12,B_7_13,B_7_14,B_7_15,B_7_16,B_7_17,B_7_18,B_7_19,B_7_20,B_7_21,B_7_22,B_7_23,B_7_24,B_7_25,B_7_26,B_7_27,B_7_28,B_7_29],[B_8_1,B_8_2,B_8_3,B_8_4,B_8_5,B_8_6,B_8_7,B_8_8,B_8_9,B_8_10,B_8_11,B_8_12,B_8_13,B_8_14,B_8_15,B_8_16,B_8_17,B_8_18,B_8_19,B_8_20,B_8_21,B_8_22,B_8_23,B_8_24,B_8_25,B_8_26,B_8_27,B_8_28,B_8_29],[B_9_1,B_9_2,B_9_3,B_9_4,B_9_5,B_9_6,B_9_7,B_9_8,B_9_9,B_9_10,B_9_11,B_9_12,B_9_13,B_9_14,B_9_15,B_9_16,B_9_17,B_9_18,B_9_19,B_9_20,B_9_21,B_9_22,B_9_23,B_9_24,B_9_25,B_9_26,B_9_27,B_9_28,B_9_29],[B_10_1,B_10_2,B_10_3,B_10_4,B_10_5,B_10_6,B_10_7,B_10_8,B_10_9,B_10_10,B_10_11,B_10_12,B_10_13,B_10_14,B_10_15,B_10_16,B_10_17,B_10_18,B_10_19,B_10_20,B_10_21,B_10_22,B_10_23,B_10_24,B_10_25,B_10_26,B_10_27,B_10_28,B_10_29],[B_11_1,B_11_2,B_11_3,B_11_4,B_11_5,B_11_6,B_11_7,B_11_8,B_11_9,B_11_10,B_11_11,B_11_12,B_11_13,B_11_14,B_11_15,B_11_16,B_11_17,B_11_18,B_11_19,B_11_20,B_11_21,B_11_22,B_11_23,B_11_24,B_11_25,B_11_26,B_11_27,B_11_28,B_11_29]]),Matrix(29, 8, [[C_1_1,C_1_2,C_1_3,C_1_4,C_1_5,C_1_6,C_1_7,C_1_8],[C_2_1,C_2_2,C_2_3,C_2_4,C_2_5,C_2_6,C_2_7,C_2_8],[C_3_1,C_3_2,C_3_3,C_3_4,C_3_5,C_3_6,C_3_7,C_3_8],[C_4_1,C_4_2,C_4_3,C_4_4,C_4_5,C_4_6,C_4_7,C_4_8],[C_5_1,C_5_2,C_5_3,C_5_4,C_5_5,C_5_6,C_5_7,C_5_8],[C_6_1,C_6_2,C_6_3,C_6_4,C_6_5,C_6_6,C_6_7,C_6_8],[C_7_1,C_7_2,C_7_3,C_7_4,C_7_5,C_7_6,C_7_7,C_7_8],[C_8_1,C_8_2,C_8_3,C_8_4,C_8_5,C_8_6,C_8_7,C_8_8],[C_9_1,C_9_2,C_9_3,C_9_4,C_9_5,C_9_6,C_9_7,C_9_8],[C_10_1,C_10_2,C_10_3,C_10_4,C_10_5,C_10_6,C_10_7,C_10_8],[C_11_1,C_11_2,C_11_3,C_11_4,C_11_5,C_11_6,C_11_7,C_11_8],[C_12_1,C_12_2,C_12_3,C_12_4,C_12_5,C_12_6,C_12_7,C_12_8],[C_13_1,C_13_2,C_13_3,C_13_4,C_13_5,C_13_6,C_13_7,C_13_8],[C_14_1,C_14_2,C_14_3,C_14_4,C_14_5,C_14_6,C_14_7,C_14_8],[C_15_1,C_15_2,C_15_3,C_15_4,C_15_5,C_15_6,C_15_7,C_15_8],[C_16_1,C_16_2,C_16_3,C_16_4,C_16_5,C_16_6,C_16_7,C_16_8],[C_17_1,C_17_2,C_17_3,C_17_4,C_17_5,C_17_6,C_17_7,C_17_8],[C_18_1,C_18_2,C_18_3,C_18_4,C_18_5,C_18_6,C_18_7,C_18_8],[C_19_1,C_19_2,C_19_3,C_19_4,C_19_5,C_19_6,C_19_7,C_19_8],[C_20_1,C_20_2,C_20_3,C_20_4,C_20_5,C_20_6,C_20_7,C_20_8],[C_21_1,C_21_2,C_21_3,C_21_4,C_21_5,C_21_6,C_21_7,C_21_8],[C_22_1,C_22_2,C_22_3,C_22_4,C_22_5,C_22_6,C_22_7,C_22_8],[C_23_1,C_23_2,C_23_3,C_23_4,C_23_5,C_23_6,C_23_7,C_23_8],[C_24_1,C_24_2,C_24_3,C_24_4,C_24_5,C_24_6,C_24_7,C_24_8],[C_25_1,C_25_2,C_25_3,C_25_4,C_25_5,C_25_6,C_25_7,C_25_8],[C_26_1,C_26_2,C_26_3,C_26_4,C_26_5,C_26_6,C_26_7,C_26_8],[C_27_1,C_27_2,C_27_3,C_27_4,C_27_5,C_27_6,C_27_7,C_27_8],[C_28_1,C_28_2,C_28_3,C_28_4,C_28_5,C_28_6,C_28_7,C_28_8],[C_29_1,C_29_2,C_29_3,C_29_4,C_29_5,C_29_6,C_29_7,C_29_8]]))) = Trace(Mul(Matrix(8, 11, [[A_1_1,A_1_2,A_1_3,A_1_4,A_1_5,A_1_6,A_1_7,A_1_8,A_1_9,A_1_10,A_1_11],[A_2_1,A_2_2,A_2_3,A_2_4,A_2_5,A_2_6,A_2_7,A_2_8,A_2_9,A_2_10,A_2_11],[A_3_1,A_3_2,A_3_3,A_3_4,A_3_5,A_3_6,A_3_7,A_3_8,A_3_9,A_3_10,A_3_11],[A_4_1,A_4_2,A_4_3,A_4_4,A_4_5,A_4_6,A_4_7,A_4_8,A_4_9,A_4_10,A_4_11],[A_5_1,A_5_2,A_5_3,A_5_4,A_5_5,A_5_6,A_5_7,A_5_8,A_5_9,A_5_10,A_5_11],[A_6_1,A_6_2,A_6_3,A_6_4,A_6_5,A_6_6,A_6_7,A_6_8,A_6_9,A_6_10,A_6_11],[A_7_1,A_7_2,A_7_3,A_7_4,A_7_5,A_7_6,A_7_7,A_7_8,A_7_9,A_7_10,A_7_11],[A_8_1,A_8_2,A_8_3,A_8_4,A_8_5,A_8_6,A_8_7,A_8_8,A_8_9,A_8_10,A_8_11]]),Matrix(11, 2, [[B_1_1,B_1_2],[B_2_1,B_2_2],[B_3_1,B_3_2],[B_4_1,B_4_2],[B_5_1,B_5_2],[B_6_1,B_6_2],[B_7_1,B_7_2],[B_8_1,B_8_2],[B_9_1,B_9_2],[B_10_1,B_10_2],[B_11_1,B_11_2]]),Matrix(2, 8, [[C_1_1,C_1_2,C_1_3,C_1_4,C_1_5,C_1_6,C_1_7,C_1_8],[C_2_1,C_2_2,C_2_3,C_2_4,C_2_5,C_2_6,C_2_7,C_2_8]])))+Trace(Mul(Matrix(8, 11, [[A_1_1,A_1_2,A_1_3,A_1_4,A_1_5,A_1_6,A_1_7,A_1_8,A_1_9,A_1_10,A_1_11],[A_2_1,A_2_2,A_2_3,A_2_4,A_2_5,A_2_6,A_2_7,A_2_8,A_2_9,A_2_10,A_2_11],[A_3_1,A_3_2,A_3_3,A_3_4,A_3_5,A_3_6,A_3_7,A_3_8,A_3_9,A_3_10,A_3_11],[A_4_1,A_4_2,A_4_3,A_4_4,A_4_5,A_4_6,A_4_7,A_4_8,A_4_9,A_4_10,A_4_11],[A_5_1,A_5_2,A_5_3,A_5_4,A_5_5,A_5_6,A_5_7,A_5_8,A_5_9,A_5_10,A_5_11],[A_6_1,A_6_2,A_6_3,A_6_4,A_6_5,A_6_6,A_6_7,A_6_8,A_6_9,A_6_10,A_6_11],[A_7_1,A_7_2,A_7_3,A_7_4,A_7_5,A_7_6,A_7_7,A_7_8,A_7_9,A_7_10,A_7_11],[A_8_1,A_8_2,A_8_3,A_8_4,A_8_5,A_8_6,A_8_7,A_8_8,A_8_9,A_8_10,A_8_11]]),Matrix(11, 27, [[B_1_3,B_1_4,B_1_5,B_1_6,B_1_7,B_1_8,B_1_9,B_1_10,B_1_11,B_1_12,B_1_13,B_1_14,B_1_15,B_1_16,B_1_17,B_1_18,B_1_19,B_1_20,B_1_21,B_1_22,B_1_23,B_1_24,B_1_25,B_1_26,B_1_27,B_1_28,B_1_29],[B_2_3,B_2_4,B_2_5,B_2_6,B_2_7,B_2_8,B_2_9,B_2_10,B_2_11,B_2_12,B_2_13,B_2_14,B_2_15,B_2_16,B_2_17,B_2_18,B_2_19,B_2_20,B_2_21,B_2_22,B_2_23,B_2_24,B_2_25,B_2_26,B_2_27,B_2_28,B_2_29],[B_3_3,B_3_4,B_3_5,B_3_6,B_3_7,B_3_8,B_3_9,B_3_10,B_3_11,B_3_12,B_3_13,B_3_14,B_3_15,B_3_16,B_3_17,B_3_18,B_3_19,B_3_20,B_3_21,B_3_22,B_3_23,B_3_24,B_3_25,B_3_26,B_3_27,B_3_28,B_3_29],[B_4_3,B_4_4,B_4_5,B_4_6,B_4_7,B_4_8,B_4_9,B_4_10,B_4_11,B_4_12,B_4_13,B_4_14,B_4_15,B_4_16,B_4_17,B_4_18,B_4_19,B_4_20,B_4_21,B_4_22,B_4_23,B_4_24,B_4_25,B_4_26,B_4_27,B_4_28,B_4_29],[B_5_3,B_5_4,B_5_5,B_5_6,B_5_7,B_5_8,B_5_9,B_5_10,B_5_11,B_5_12,B_5_13,B_5_14,B_5_15,B_5_16,B_5_17,B_5_18,B_5_19,B_5_20,B_5_21,B_5_22,B_5_23,B_5_24,B_5_25,B_5_26,B_5_27,B_5_28,B_5_29],[B_6_3,B_6_4,B_6_5,B_6_6,B_6_7,B_6_8,B_6_9,B_6_10,B_6_11,B_6_12,B_6_13,B_6_14,B_6_15,B_6_16,B_6_17,B_6_18,B_6_19,B_6_20,B_6_21,B_6_22,B_6_23,B_6_24,B_6_25,B_6_26,B_6_27,B_6_28,B_6_29],[B_7_3,B_7_4,B_7_5,B_7_6,B_7_7,B_7_8,B_7_9,B_7_10,B_7_11,B_7_12,B_7_13,B_7_14,B_7_15,B_7_16,B_7_17,B_7_18,B_7_19,B_7_20,B_7_21,B_7_22,B_7_23,B_7_24,B_7_25,B_7_26,B_7_27,B_7_28,B_7_29],[B_8_3,B_8_4,B_8_5,B_8_6,B_8_7,B_8_8,B_8_9,B_8_10,B_8_11,B_8_12,B_8_13,B_8_14,B_8_15,B_8_16,B_8_17,B_8_18,B_8_19,B_8_20,B_8_21,B_8_22,B_8_23,B_8_24,B_8_25,B_8_26,B_8_27,B_8_28,B_8_29],[B_9_3,B_9_4,B_9_5,B_9_6,B_9_7,B_9_8,B_9_9,B_9_10,B_9_11,B_9_12,B_9_13,B_9_14,B_9_15,B_9_16,B_9_17,B_9_18,B_9_19,B_9_20,B_9_21,B_9_22,B_9_23,B_9_24,B_9_25,B_9_26,B_9_27,B_9_28,B_9_29],[B_10_3,B_10_4,B_10_5,B_10_6,B_10_7,B_10_8,B_10_9,B_10_10,B_10_11,B_10_12,B_10_13,B_10_14,B_10_15,B_10_16,B_10_17,B_10_18,B_10_19,B_10_20,B_10_21,B_10_22,B_10_23,B_10_24,B_10_25,B_10_26,B_10_27,B_10_28,B_10_29],[B_11_3,B_11_4,B_11_5,B_11_6,B_11_7,B_11_8,B_11_9,B_11_10,B_11_11,B_11_12,B_11_13,B_11_14,B_11_15,B_11_16,B_11_17,B_11_18,B_11_19,B_11_20,B_11_21,B_11_22,B_11_23,B_11_24,B_11_25,B_11_26,B_11_27,B_11_28,B_11_29]]),Matrix(27, 8, [[C_3_1,C_3_2,C_3_3,C_3_4,C_3_5,C_3_6,C_3_7,C_3_8],[C_4_1,C_4_2,C_4_3,C_4_4,C_4_5,C_4_6,C_4_7,C_4_8],[C_5_1,C_5_2,C_5_3,C_5_4,C_5_5,C_5_6,C_5_7,C_5_8],[C_6_1,C_6_2,C_6_3,C_6_4,C_6_5,C_6_6,C_6_7,C_6_8],[C_7_1,C_7_2,C_7_3,C_7_4,C_7_5,C_7_6,C_7_7,C_7_8],[C_8_1,C_8_2,C_8_3,C_8_4,C_8_5,C_8_6,C_8_7,C_8_8],[C_9_1,C_9_2,C_9_3,C_9_4,C_9_5,C_9_6,C_9_7,C_9_8],[C_10_1,C_10_2,C_10_3,C_10_4,C_10_5,C_10_6,C_10_7,C_10_8],[C_11_1,C_11_2,C_11_3,C_11_4,C_11_5,C_11_6,C_11_7,C_11_8],[C_12_1,C_12_2,C_12_3,C_12_4,C_12_5,C_12_6,C_12_7,C_12_8],[C_13_1,C_13_2,C_13_3,C_13_4,C_13_5,C_13_6,C_13_7,C_13_8],[C_14_1,C_14_2,C_14_3,C_14_4,C_14_5,C_14_6,C_14_7,C_14_8],[C_15_1,C_15_2,C_15_3,C_15_4,C_15_5,C_15_6,C_15_7,C_15_8],[C_16_1,C_16_2,C_16_3,C_16_4,C_16_5,C_16_6,C_16_7,C_16_8],[C_17_1,C_17_2,C_17_3,C_17_4,C_17_5,C_17_6,C_17_7,C_17_8],[C_18_1,C_18_2,C_18_3,C_18_4,C_18_5,C_18_6,C_18_7,C_18_8],[C_19_1,C_19_2,C_19_3,C_19_4,C_19_5,C_19_6,C_19_7,C_19_8],[C_20_1,C_20_2,C_20_3,C_20_4,C_20_5,C_20_6,C_20_7,C_20_8],[C_21_1,C_21_2,C_21_3,C_21_4,C_21_5,C_21_6,C_21_7,C_21_8],[C_22_1,C_22_2,C_22_3,C_22_4,C_22_5,C_22_6,C_22_7,C_22_8],[C_23_1,C_23_2,C_23_3,C_23_4,C_23_5,C_23_6,C_23_7,C_23_8],[C_24_1,C_24_2,C_24_3,C_24_4,C_24_5,C_24_6,C_24_7,C_24_8],[C_25_1,C_25_2,C_25_3,C_25_4,C_25_5,C_25_6,C_25_7,C_25_8],[C_26_1,C_26_2,C_26_3,C_26_4,C_26_5,C_26_6,C_26_7,C_26_8],[C_27_1,C_27_2,C_27_3,C_27_4,C_27_5,C_27_6,C_27_7,C_27_8],[C_28_1,C_28_2,C_28_3,C_28_4,C_28_5,C_28_6,C_28_7,C_28_8],[C_29_1,C_29_2,C_29_3,C_29_4,C_29_5,C_29_6,C_29_7,C_29_8]])))

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table