Description of fast matrix multiplication algorithm: ⟨8×10×32:1664⟩

Algorithm type

6X4Y8Z4+48X4Y6Z4+6X2Y10Z2+42X4Y4Z4+60X2Y8Z2+2X2Y4Z6+16X2Y3Z6+66X2Y6Z2+8X2Y4Z4+14X2Y2Z6+64X2Y3Z4+2XY5Z3+64X2Y4Z2+56X2Y2Z4+8XY5Z2+20XY4Z3+80X2Y3Z2+10XY5Z+80XY4Z2+22XY3Z3+172X2Y2Z2+100XY4Z+88XY3Z2+18XY2Z3+110XY3Z+72XY2Z2+34XYZ3+90XY2Z+136XYZ2+170XYZ6X4Y8Z448X4Y6Z46X2Y10Z242X4Y4Z460X2Y8Z22X2Y4Z616X2Y3Z666X2Y6Z28X2Y4Z414X2Y2Z664X2Y3Z42XY5Z364X2Y4Z256X2Y2Z48XY5Z220XY4Z380X2Y3Z210XY5Z80XY4Z222XY3Z3172X2Y2Z2100XY4Z88XY3Z218XY2Z3110XY3Z72XY2Z234XYZ390XY2Z136XYZ2170XYZ6*X^4*Y^8*Z^4+48*X^4*Y^6*Z^4+6*X^2*Y^10*Z^2+42*X^4*Y^4*Z^4+60*X^2*Y^8*Z^2+2*X^2*Y^4*Z^6+16*X^2*Y^3*Z^6+66*X^2*Y^6*Z^2+8*X^2*Y^4*Z^4+14*X^2*Y^2*Z^6+64*X^2*Y^3*Z^4+2*X*Y^5*Z^3+64*X^2*Y^4*Z^2+56*X^2*Y^2*Z^4+8*X*Y^5*Z^2+20*X*Y^4*Z^3+80*X^2*Y^3*Z^2+10*X*Y^5*Z+80*X*Y^4*Z^2+22*X*Y^3*Z^3+172*X^2*Y^2*Z^2+100*X*Y^4*Z+88*X*Y^3*Z^2+18*X*Y^2*Z^3+110*X*Y^3*Z+72*X*Y^2*Z^2+34*X*Y*Z^3+90*X*Y^2*Z+136*X*Y*Z^2+170*X*Y*Z

Algorithm definition

The algorithm ⟨8×10×32:1664⟩ is the (Kronecker) tensor product of ⟨2×5×8:64⟩ with ⟨4×2×4:26⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table