Description of fast matrix multiplication algorithm: ⟨8×10×28:1430⟩

Algorithm type

12X4Y10Z4+12X4Y8Z4+6X4Y6Z4+36X2Y10Z2+4X2Y5Z6+60X4Y4Z4+42X2Y8Z2+4X2Y4Z6+16X2Y5Z4+2X2Y3Z6+6X4Y2Z4+24X2Y6Z2+16X2Y4Z4+20X2Y2Z6+20X2Y5Z2+8X2Y3Z4+2X2YZ6+12XY5Z3+56X2Y4Z2+92X2Y2Z4+48XY5Z2+14XY4Z3+4XYZ6+10X2Y3Z2+8X2YZ4+60XY5Z+56XY4Z2+8XY3Z3+184X2Y2Z2+70XY4Z+32XY3Z2+12XY2Z3+16XYZ4+10X2YZ2+40XY3Z+48XY2Z2+28XYZ3+60XY2Z+132XYZ2+140XYZ12X4Y10Z412X4Y8Z46X4Y6Z436X2Y10Z24X2Y5Z660X4Y4Z442X2Y8Z24X2Y4Z616X2Y5Z42X2Y3Z66X4Y2Z424X2Y6Z216X2Y4Z420X2Y2Z620X2Y5Z28X2Y3Z42X2YZ612XY5Z356X2Y4Z292X2Y2Z448XY5Z214XY4Z34XYZ610X2Y3Z28X2YZ460XY5Z56XY4Z28XY3Z3184X2Y2Z270XY4Z32XY3Z212XY2Z316XYZ410X2YZ240XY3Z48XY2Z228XYZ360XY2Z132XYZ2140XYZ12*X^4*Y^10*Z^4+12*X^4*Y^8*Z^4+6*X^4*Y^6*Z^4+36*X^2*Y^10*Z^2+4*X^2*Y^5*Z^6+60*X^4*Y^4*Z^4+42*X^2*Y^8*Z^2+4*X^2*Y^4*Z^6+16*X^2*Y^5*Z^4+2*X^2*Y^3*Z^6+6*X^4*Y^2*Z^4+24*X^2*Y^6*Z^2+16*X^2*Y^4*Z^4+20*X^2*Y^2*Z^6+20*X^2*Y^5*Z^2+8*X^2*Y^3*Z^4+2*X^2*Y*Z^6+12*X*Y^5*Z^3+56*X^2*Y^4*Z^2+92*X^2*Y^2*Z^4+48*X*Y^5*Z^2+14*X*Y^4*Z^3+4*X*Y*Z^6+10*X^2*Y^3*Z^2+8*X^2*Y*Z^4+60*X*Y^5*Z+56*X*Y^4*Z^2+8*X*Y^3*Z^3+184*X^2*Y^2*Z^2+70*X*Y^4*Z+32*X*Y^3*Z^2+12*X*Y^2*Z^3+16*X*Y*Z^4+10*X^2*Y*Z^2+40*X*Y^3*Z+48*X*Y^2*Z^2+28*X*Y*Z^3+60*X*Y^2*Z+132*X*Y*Z^2+140*X*Y*Z

Algorithm definition

The algorithm ⟨8×10×28:1430⟩ is the (Kronecker) tensor product of ⟨2×5×7:55⟩ with ⟨4×2×4:26⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table