Description of fast matrix multiplication algorithm: ⟨8×10×28:1456⟩

Algorithm type

24X4Y6Z4+60X4Y4Z4+30X2Y8Z2+8X2Y3Z6+66X2Y6Z2+20X2Y2Z6+32X2Y3Z4+42X2Y4Z2+80X2Y2Z4+10XY4Z3+40X2Y3Z2+40XY4Z2+22XY3Z3+214X2Y2Z2+50XY4Z+88XY3Z2+14XY2Z3+110XY3Z+56XY2Z2+38XYZ3+70XY2Z+152XYZ2+190XYZ24X4Y6Z460X4Y4Z430X2Y8Z28X2Y3Z666X2Y6Z220X2Y2Z632X2Y3Z442X2Y4Z280X2Y2Z410XY4Z340X2Y3Z240XY4Z222XY3Z3214X2Y2Z250XY4Z88XY3Z214XY2Z3110XY3Z56XY2Z238XYZ370XY2Z152XYZ2190XYZ24*X^4*Y^6*Z^4+60*X^4*Y^4*Z^4+30*X^2*Y^8*Z^2+8*X^2*Y^3*Z^6+66*X^2*Y^6*Z^2+20*X^2*Y^2*Z^6+32*X^2*Y^3*Z^4+42*X^2*Y^4*Z^2+80*X^2*Y^2*Z^4+10*X*Y^4*Z^3+40*X^2*Y^3*Z^2+40*X*Y^4*Z^2+22*X*Y^3*Z^3+214*X^2*Y^2*Z^2+50*X*Y^4*Z+88*X*Y^3*Z^2+14*X*Y^2*Z^3+110*X*Y^3*Z+56*X*Y^2*Z^2+38*X*Y*Z^3+70*X*Y^2*Z+152*X*Y*Z^2+190*X*Y*Z

Algorithm definition

The algorithm ⟨8×10×28:1456⟩ is the (Kronecker) tensor product of ⟨2×5×7:56⟩ with ⟨4×2×4:26⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table