Description of fast matrix multiplication algorithm: ⟨8×10×24:1222⟩

Algorithm type

12X4Y8Z4+66X4Y4Z4+24X2Y8Z2+4X2Y4Z6+48X2Y6Z2+16X2Y4Z4+22X2Y2Z6+44X2Y4Z2+88X2Y2Z4+8XY4Z3+32XY4Z2+16XY3Z3+218X2Y2Z2+40XY4Z+64XY3Z2+8XY2Z3+80XY3Z+32XY2Z2+36XYZ3+40XY2Z+144XYZ2+180XYZ12X4Y8Z466X4Y4Z424X2Y8Z24X2Y4Z648X2Y6Z216X2Y4Z422X2Y2Z644X2Y4Z288X2Y2Z48XY4Z332XY4Z216XY3Z3218X2Y2Z240XY4Z64XY3Z28XY2Z380XY3Z32XY2Z236XYZ340XY2Z144XYZ2180XYZ12*X^4*Y^8*Z^4+66*X^4*Y^4*Z^4+24*X^2*Y^8*Z^2+4*X^2*Y^4*Z^6+48*X^2*Y^6*Z^2+16*X^2*Y^4*Z^4+22*X^2*Y^2*Z^6+44*X^2*Y^4*Z^2+88*X^2*Y^2*Z^4+8*X*Y^4*Z^3+32*X*Y^4*Z^2+16*X*Y^3*Z^3+218*X^2*Y^2*Z^2+40*X*Y^4*Z+64*X*Y^3*Z^2+8*X*Y^2*Z^3+80*X*Y^3*Z+32*X*Y^2*Z^2+36*X*Y*Z^3+40*X*Y^2*Z+144*X*Y*Z^2+180*X*Y*Z

Algorithm definition

The algorithm ⟨8×10×24:1222⟩ is the (Kronecker) tensor product of ⟨2×5×6:47⟩ with ⟨4×2×4:26⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table