Description of fast matrix multiplication algorithm: ⟨8×10×10:532⟩

Algorithm type

X4Y6Z4+4X8Y2Z2+23X4Y4Z4+4X2Y2Z8+13X2Y6Z2+8X2Y4Z4+4X2Y4Z2+4X2Y2Z4+6X2Y3Z2+24X4YZ+153X2Y2Z2+24XYZ4+78XY3Z+48XY2Z2+24XY2Z+24XYZ2+90XYZX4Y6Z44X8Y2Z223X4Y4Z44X2Y2Z813X2Y6Z28X2Y4Z44X2Y4Z24X2Y2Z46X2Y3Z224X4YZ153X2Y2Z224XYZ478XY3Z48XY2Z224XY2Z24XYZ290XYZX^4*Y^6*Z^4+4*X^8*Y^2*Z^2+23*X^4*Y^4*Z^4+4*X^2*Y^2*Z^8+13*X^2*Y^6*Z^2+8*X^2*Y^4*Z^4+4*X^2*Y^4*Z^2+4*X^2*Y^2*Z^4+6*X^2*Y^3*Z^2+24*X^4*Y*Z+153*X^2*Y^2*Z^2+24*X*Y*Z^4+78*X*Y^3*Z+48*X*Y^2*Z^2+24*X*Y^2*Z+24*X*Y*Z^2+90*X*Y*Z

Algorithm definition

The algorithm ⟨8×10×10:532⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨4×5×5:76⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table