Description of fast matrix multiplication algorithm: ⟨7×7×10:346⟩

Algorithm type

X6Y4Z4+X5Y4Z4+X5Y4Z3+3X4Y4Z4+X4Y2Z6+2X4Y3Z4+X3Y4Z4+X3Y3Z5+X2Y4Z5+XY3Z7+X4Y4Z2+X4Y3Z3+X4Y2Z4+2X3Y4Z3+X3Y3Z4+X2Y6Z2+2X2Y4Z4+4X5Y2Z2+X4Y3Z2+X3Y3Z3+X3Y2Z4+X2Y5Z2+X2Y4Z3+X2Y3Z4+X2Y2Z5+XY4Z4+2X4Y2Z2+X2Y2Z4+X4Y2Z+2X4YZ2+13X3Y2Z2+X3YZ3+X2Y3Z2+X2Y2Z3+XY2Z4+X4YZ+2X3Y2Z+78X2Y2Z2+2X2YZ3+XY3Z2+XY2Z3+20X3YZ+2X2Y2Z+6X2YZ2+14XY3Z+12XY2Z2+14XYZ3+22X2YZ+38XY2Z+34XYZ2+42XYZX6Y4Z4X5Y4Z4X5Y4Z33X4Y4Z4X4Y2Z62X4Y3Z4X3Y4Z4X3Y3Z5X2Y4Z5XY3Z7X4Y4Z2X4Y3Z3X4Y2Z42X3Y4Z3X3Y3Z4X2Y6Z22X2Y4Z44X5Y2Z2X4Y3Z2X3Y3Z3X3Y2Z4X2Y5Z2X2Y4Z3X2Y3Z4X2Y2Z5XY4Z42X4Y2Z2X2Y2Z4X4Y2Z2X4YZ213X3Y2Z2X3YZ3X2Y3Z2X2Y2Z3XY2Z4X4YZ2X3Y2Z78X2Y2Z22X2YZ3XY3Z2XY2Z320X3YZ2X2Y2Z6X2YZ214XY3Z12XY2Z214XYZ322X2YZ38XY2Z34XYZ242XYZX^6*Y^4*Z^4+X^5*Y^4*Z^4+X^5*Y^4*Z^3+3*X^4*Y^4*Z^4+X^4*Y^2*Z^6+2*X^4*Y^3*Z^4+X^3*Y^4*Z^4+X^3*Y^3*Z^5+X^2*Y^4*Z^5+X*Y^3*Z^7+X^4*Y^4*Z^2+X^4*Y^3*Z^3+X^4*Y^2*Z^4+2*X^3*Y^4*Z^3+X^3*Y^3*Z^4+X^2*Y^6*Z^2+2*X^2*Y^4*Z^4+4*X^5*Y^2*Z^2+X^4*Y^3*Z^2+X^3*Y^3*Z^3+X^3*Y^2*Z^4+X^2*Y^5*Z^2+X^2*Y^4*Z^3+X^2*Y^3*Z^4+X^2*Y^2*Z^5+X*Y^4*Z^4+2*X^4*Y^2*Z^2+X^2*Y^2*Z^4+X^4*Y^2*Z+2*X^4*Y*Z^2+13*X^3*Y^2*Z^2+X^3*Y*Z^3+X^2*Y^3*Z^2+X^2*Y^2*Z^3+X*Y^2*Z^4+X^4*Y*Z+2*X^3*Y^2*Z+78*X^2*Y^2*Z^2+2*X^2*Y*Z^3+X*Y^3*Z^2+X*Y^2*Z^3+20*X^3*Y*Z+2*X^2*Y^2*Z+6*X^2*Y*Z^2+14*X*Y^3*Z+12*X*Y^2*Z^2+14*X*Y*Z^3+22*X^2*Y*Z+38*X*Y^2*Z+34*X*Y*Z^2+42*X*Y*Z

Algorithm definition

The algorithm ⟨7×7×10:346⟩ could be constructed using the following decomposition:

⟨7×7×10:346⟩ = ⟨4×4×5:61⟩ + ⟨3×4×5:47⟩ + ⟨4×3×5:47⟩ + ⟨3×4×5:47⟩ + ⟨3×3×5:36⟩ + ⟨4×4×5:61⟩ + ⟨4×3×5:47⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_7_1A_7_2A_7_3A_7_4A_7_5A_7_6A_7_7B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10C_1_1C_1_2C_1_3C_1_4C_1_5C_1_6C_1_7C_2_1C_2_2C_2_3C_2_4C_2_5C_2_6C_2_7C_3_1C_3_2C_3_3C_3_4C_3_5C_3_6C_3_7C_4_1C_4_2C_4_3C_4_4C_4_5C_4_6C_4_7C_5_1C_5_2C_5_3C_5_4C_5_5C_5_6C_5_7C_6_1C_6_2C_6_3C_6_4C_6_5C_6_6C_6_7C_7_1C_7_2C_7_3C_7_4C_7_5C_7_6C_7_7C_8_1C_8_2C_8_3C_8_4C_8_5C_8_6C_8_7C_9_1C_9_2C_9_3C_9_4C_9_5C_9_6C_9_7C_10_1C_10_2C_10_3C_10_4C_10_5C_10_6C_10_7=TraceMulA_3_3A_3_4A_3_6A_3_7A_4_3A_5_5+A_4_4A_5_1+A_4_6A_5_2+A_4_7A_6_3A_1_5+A_6_4A_1_1+A_6_6A_1_2+A_6_7A_7_3A_2_5+A_7_4A_2_1+A_7_6A_2_2+A_7_7B_3_6B_3_7B_3_8B_3_9B_3_10B_5_1+B_4_6B_5_2+B_4_7B_5_3+B_4_8B_5_4+B_4_9B_5_5+B_4_10B_1_1+B_6_6B_1_2+B_6_7B_1_3+B_6_8B_1_4+B_6_9B_1_5+B_6_10B_2_1+B_7_6B_2_2+B_7_7B_2_3+B_7_8B_2_4+B_7_9B_2_5+B_7_10C_6_3C_1_5+C_6_4C_1_1+C_6_6C_1_2+C_6_7C_7_3C_2_5+C_7_4C_2_1+C_7_6C_2_2+C_7_7C_8_3C_3_5+C_8_4C_3_1+C_8_6C_3_2+C_8_7C_9_3C_4_5+C_9_4C_4_1+C_9_6C_4_2+C_9_7C_10_3C_5_5+C_10_4C_5_1+C_10_6C_5_2+C_10_7+TraceMul-A_4_3+A_5_3-A_4_4+A_5_4-A_4_6+A_5_6-A_4_7+A_5_7A_1_3-A_6_3A_1_4-A_6_4A_1_6-A_6_6A_1_7-A_6_7A_2_3-A_7_3A_2_4-A_7_4A_2_6-A_7_6A_2_7-A_7_7B_3_1+B_3_6B_3_2+B_3_7B_3_3+B_3_8B_3_4+B_3_9B_3_5+B_3_10B_4_1+B_4_6B_4_2+B_4_7B_4_3+B_4_8B_4_4+B_4_9B_4_5+B_4_10B_6_1+B_6_6B_6_2+B_6_7B_6_3+B_6_8B_6_4+B_6_9B_6_5+B_6_10B_7_1+B_7_6B_7_2+B_7_7B_7_3+B_7_8B_7_4+B_7_9B_7_5+B_7_10C_1_5C_1_1C_1_2C_2_5C_2_1C_2_2C_3_5C_3_1C_3_2C_4_5C_4_1C_4_2C_5_5C_5_1C_5_2+TraceMulA_3_5A_3_1A_3_2A_4_5-A_5_5-A_5_1+A_4_1-A_5_2+A_4_2-A_1_5+A_6_5-A_1_1+A_6_1-A_1_2+A_6_2-A_2_5+A_7_5-A_2_1+A_7_1-A_2_2+A_7_2B_5_1+B_5_6B_5_2+B_5_7B_5_3+B_5_8B_5_4+B_5_9B_5_5+B_5_10B_1_1+B_1_6B_1_2+B_1_7B_1_3+B_1_8B_1_4+B_1_9B_1_5+B_1_10B_2_1+B_2_6B_2_2+B_2_7B_2_3+B_2_8B_2_4+B_2_9B_2_5+B_2_10C_6_3C_6_4C_6_6C_6_7C_7_3C_7_4C_7_6C_7_7C_8_3C_8_4C_8_6C_8_7C_9_3C_9_4C_9_6C_9_7C_10_3C_10_4C_10_6C_10_7+TraceMulA_5_3A_5_5+A_5_4A_5_1+A_5_6A_5_2+A_5_7A_1_3A_1_4+A_1_5A_1_1+A_1_6A_1_2+A_1_7A_2_3A_2_4+A_2_5A_2_1+A_2_6A_2_2+A_2_7B_3_6B_3_7B_3_8B_3_9B_3_10B_4_6B_4_7B_4_8B_4_9B_4_10B_6_6B_6_7B_6_8B_6_9B_6_10B_7_6B_7_7B_7_8B_7_9B_7_10-C_1_5+C_6_5-C_1_1+C_6_1-C_1_2+C_6_2-C_2_5+C_7_5-C_2_1+C_7_1-C_2_2+C_7_2-C_3_5+C_8_5-C_3_1+C_8_1-C_3_2+C_8_2-C_4_5+C_9_5-C_4_1+C_9_1-C_4_2+C_9_2-C_5_5+C_10_5-C_5_1+C_10_1-C_5_2+C_10_2+TraceMulA_5_5A_5_1A_5_2A_1_5A_1_1A_1_2A_2_5A_2_1A_2_2-B_4_6+B_5_6-B_4_7+B_5_7-B_4_8+B_5_8B_5_9-B_4_9B_5_10-B_4_10B_1_6-B_6_6B_1_7-B_6_7B_1_8-B_6_8B_1_9-B_6_9B_1_10-B_6_10B_2_6-B_7_6B_2_7-B_7_7B_2_8-B_7_8B_2_9-B_7_9B_2_10-B_7_10C_6_4+C_6_5C_6_1+C_6_6C_6_2+C_6_7C_7_4+C_7_5C_7_1+C_7_6C_7_2+C_7_7C_8_4+C_8_5C_8_1+C_8_6C_8_2+C_8_7C_9_4+C_9_5C_9_1+C_9_6C_9_2+C_9_7C_10_4+C_10_5C_10_1+C_10_6C_10_2+C_10_7+TraceMulA_3_3A_3_4A_3_6A_3_7A_4_3A_4_4A_4_6A_4_7A_6_3A_6_4A_6_6A_6_7A_7_3A_7_4A_7_6A_7_7B_3_1B_3_2B_3_3B_3_4B_3_5B_4_1-B_5_1B_4_2-B_5_2B_4_3-B_5_3B_4_4-B_5_4B_4_5-B_5_5-B_1_1+B_6_1-B_1_2+B_6_2-B_1_3+B_6_3-B_1_4+B_6_4-B_1_5+B_6_5-B_2_1+B_7_1-B_2_2+B_7_2-B_2_3+B_7_3-B_2_4+B_7_4-B_2_5+B_7_5C_1_3C_1_4+C_1_5C_1_1+C_1_6C_1_2+C_1_7C_2_3C_2_4+C_2_5C_2_1+C_2_6C_2_2+C_2_7C_3_3C_3_4+C_3_5C_3_1+C_3_6C_3_2+C_3_7C_4_3C_4_4+C_4_5C_4_1+C_4_6C_4_2+C_4_7C_5_3C_5_4+C_5_5C_5_1+C_5_6C_5_2+C_5_7+TraceMulA_3_4+A_3_5A_3_1+A_3_6A_3_2+A_3_7A_4_5+A_4_4A_4_1+A_4_6A_4_2+A_4_7A_6_5+A_6_4A_6_1+A_6_6A_6_2+A_6_7A_7_4+A_7_5A_7_1+A_7_6A_7_2+A_7_7B_5_1B_5_2B_5_3B_5_4B_5_5B_1_1B_1_2B_1_3B_1_4B_1_5B_2_1B_2_2B_2_3B_2_4B_2_5C_1_3-C_6_3C_1_4-C_6_4C_1_6-C_6_6C_1_7-C_6_7C_2_3-C_7_3C_2_4-C_7_4C_2_6-C_7_6C_2_7-C_7_7C_3_3-C_8_3C_3_4-C_8_4C_3_6-C_8_6C_3_7-C_8_7-C_9_3+C_4_3C_4_4-C_9_4C_4_6-C_9_6C_4_7-C_9_7C_5_3-C_10_3C_5_4-C_10_4C_5_6-C_10_6C_5_7-C_10_7

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table