Description of fast matrix multiplication algorithm: ⟨6×9×21:720⟩

Algorithm type

48X4Y6Z6+72X2Y6Z6+96X2Y6Z3+144XY6Z3+48X3Y2Z3+96X2Y3Z3+72X3YZ3+144XY3Z348X4Y6Z672X2Y6Z696X2Y6Z3144XY6Z348X3Y2Z396X2Y3Z372X3YZ3144XY3Z348*X^4*Y^6*Z^6+72*X^2*Y^6*Z^6+96*X^2*Y^6*Z^3+144*X*Y^6*Z^3+48*X^3*Y^2*Z^3+96*X^2*Y^3*Z^3+72*X^3*Y*Z^3+144*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨6×9×21:720⟩ could be constructed using the following decomposition:

⟨6×9×21:720⟩ = ⟨6×9×3:120⟩ + ⟨6×9×18:600⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_1_18B_1_19B_1_20B_1_21B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_2_18B_2_19B_2_20B_2_21B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_3_18B_3_19B_3_20B_3_21B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_4_15B_4_16B_4_17B_4_18B_4_19B_4_20B_4_21B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_5_15B_5_16B_5_17B_5_18B_5_19B_5_20B_5_21B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_6_15B_6_16B_6_17B_6_18B_6_19B_6_20B_6_21B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_7_15B_7_16B_7_17B_7_18B_7_19B_7_20B_7_21B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14B_8_15B_8_16B_8_17B_8_18B_8_19B_8_20B_8_21B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_9_12B_9_13B_9_14B_9_15B_9_16B_9_17B_9_18B_9_19B_9_20B_9_21C_1_1C_1_2C_1_3C_1_4C_1_5C_1_6C_2_1C_2_2C_2_3C_2_4C_2_5C_2_6C_3_1C_3_2C_3_3C_3_4C_3_5C_3_6C_4_1C_4_2C_4_3C_4_4C_4_5C_4_6C_5_1C_5_2C_5_3C_5_4C_5_5C_5_6C_6_1C_6_2C_6_3C_6_4C_6_5C_6_6C_7_1C_7_2C_7_3C_7_4C_7_5C_7_6C_8_1C_8_2C_8_3C_8_4C_8_5C_8_6C_9_1C_9_2C_9_3C_9_4C_9_5C_9_6C_10_1C_10_2C_10_3C_10_4C_10_5C_10_6C_11_1C_11_2C_11_3C_11_4C_11_5C_11_6C_12_1C_12_2C_12_3C_12_4C_12_5C_12_6C_13_1C_13_2C_13_3C_13_4C_13_5C_13_6C_14_1C_14_2C_14_3C_14_4C_14_5C_14_6C_15_1C_15_2C_15_3C_15_4C_15_5C_15_6C_16_1C_16_2C_16_3C_16_4C_16_5C_16_6C_17_1C_17_2C_17_3C_17_4C_17_5C_17_6C_18_1C_18_2C_18_3C_18_4C_18_5C_18_6C_19_1C_19_2C_19_3C_19_4C_19_5C_19_6C_20_1C_20_2C_20_3C_20_4C_20_5C_20_6C_21_1C_21_2C_21_3C_21_4C_21_5C_21_6=TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9B_1_1B_1_2B_1_3B_2_1B_2_2B_2_3B_3_1B_3_2B_3_3B_4_1B_4_2B_4_3B_5_1B_5_2B_5_3B_6_1B_6_2B_6_3B_7_1B_7_2B_7_3B_8_1B_8_2B_8_3B_9_1B_9_2B_9_3C_1_1C_1_2C_1_3C_1_4C_1_5C_1_6C_2_1C_2_2C_2_3C_2_4C_2_5C_2_6C_3_1C_3_2C_3_3C_3_4C_3_5C_3_6+TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_1_18B_1_19B_1_20B_1_21B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_2_18B_2_19B_2_20B_2_21B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_3_18B_3_19B_3_20B_3_21B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_4_15B_4_16B_4_17B_4_18B_4_19B_4_20B_4_21B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_5_15B_5_16B_5_17B_5_18B_5_19B_5_20B_5_21B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_6_15B_6_16B_6_17B_6_18B_6_19B_6_20B_6_21B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_7_15B_7_16B_7_17B_7_18B_7_19B_7_20B_7_21B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14B_8_15B_8_16B_8_17B_8_18B_8_19B_8_20B_8_21B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_9_12B_9_13B_9_14B_9_15B_9_16B_9_17B_9_18B_9_19B_9_20B_9_21C_4_1C_4_2C_4_3C_4_4C_4_5C_4_6C_5_1C_5_2C_5_3C_5_4C_5_5C_5_6C_6_1C_6_2C_6_3C_6_4C_6_5C_6_6C_7_1C_7_2C_7_3C_7_4C_7_5C_7_6C_8_1C_8_2C_8_3C_8_4C_8_5C_8_6C_9_1C_9_2C_9_3C_9_4C_9_5C_9_6C_10_1C_10_2C_10_3C_10_4C_10_5C_10_6C_11_1C_11_2C_11_3C_11_4C_11_5C_11_6C_12_1C_12_2C_12_3C_12_4C_12_5C_12_6C_13_1C_13_2C_13_3C_13_4C_13_5C_13_6C_14_1C_14_2C_14_3C_14_4C_14_5C_14_6C_15_1C_15_2C_15_3C_15_4C_15_5C_15_6C_16_1C_16_2C_16_3C_16_4C_16_5C_16_6C_17_1C_17_2C_17_3C_17_4C_17_5C_17_6C_18_1C_18_2C_18_3C_18_4C_18_5C_18_6C_19_1C_19_2C_19_3C_19_4C_19_5C_19_6C_20_1C_20_2C_20_3C_20_4C_20_5C_20_6C_21_1C_21_2C_21_3C_21_4C_21_5C_21_6TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_1_18B_1_19B_1_20B_1_21B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_2_18B_2_19B_2_20B_2_21B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_3_18B_3_19B_3_20B_3_21B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_4_15B_4_16B_4_17B_4_18B_4_19B_4_20B_4_21B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_5_15B_5_16B_5_17B_5_18B_5_19B_5_20B_5_21B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_6_15B_6_16B_6_17B_6_18B_6_19B_6_20B_6_21B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_7_15B_7_16B_7_17B_7_18B_7_19B_7_20B_7_21B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14B_8_15B_8_16B_8_17B_8_18B_8_19B_8_20B_8_21B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_9_12B_9_13B_9_14B_9_15B_9_16B_9_17B_9_18B_9_19B_9_20B_9_21C_1_1C_1_2C_1_3C_1_4C_1_5C_1_6C_2_1C_2_2C_2_3C_2_4C_2_5C_2_6C_3_1C_3_2C_3_3C_3_4C_3_5C_3_6C_4_1C_4_2C_4_3C_4_4C_4_5C_4_6C_5_1C_5_2C_5_3C_5_4C_5_5C_5_6C_6_1C_6_2C_6_3C_6_4C_6_5C_6_6C_7_1C_7_2C_7_3C_7_4C_7_5C_7_6C_8_1C_8_2C_8_3C_8_4C_8_5C_8_6C_9_1C_9_2C_9_3C_9_4C_9_5C_9_6C_10_1C_10_2C_10_3C_10_4C_10_5C_10_6C_11_1C_11_2C_11_3C_11_4C_11_5C_11_6C_12_1C_12_2C_12_3C_12_4C_12_5C_12_6C_13_1C_13_2C_13_3C_13_4C_13_5C_13_6C_14_1C_14_2C_14_3C_14_4C_14_5C_14_6C_15_1C_15_2C_15_3C_15_4C_15_5C_15_6C_16_1C_16_2C_16_3C_16_4C_16_5C_16_6C_17_1C_17_2C_17_3C_17_4C_17_5C_17_6C_18_1C_18_2C_18_3C_18_4C_18_5C_18_6C_19_1C_19_2C_19_3C_19_4C_19_5C_19_6C_20_1C_20_2C_20_3C_20_4C_20_5C_20_6C_21_1C_21_2C_21_3C_21_4C_21_5C_21_6TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9B_1_1B_1_2B_1_3B_2_1B_2_2B_2_3B_3_1B_3_2B_3_3B_4_1B_4_2B_4_3B_5_1B_5_2B_5_3B_6_1B_6_2B_6_3B_7_1B_7_2B_7_3B_8_1B_8_2B_8_3B_9_1B_9_2B_9_3C_1_1C_1_2C_1_3C_1_4C_1_5C_1_6C_2_1C_2_2C_2_3C_2_4C_2_5C_2_6C_3_1C_3_2C_3_3C_3_4C_3_5C_3_6TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_1_18B_1_19B_1_20B_1_21B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_2_18B_2_19B_2_20B_2_21B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_3_18B_3_19B_3_20B_3_21B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_4_15B_4_16B_4_17B_4_18B_4_19B_4_20B_4_21B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_5_15B_5_16B_5_17B_5_18B_5_19B_5_20B_5_21B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_6_15B_6_16B_6_17B_6_18B_6_19B_6_20B_6_21B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_7_15B_7_16B_7_17B_7_18B_7_19B_7_20B_7_21B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14B_8_15B_8_16B_8_17B_8_18B_8_19B_8_20B_8_21B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_9_12B_9_13B_9_14B_9_15B_9_16B_9_17B_9_18B_9_19B_9_20B_9_21C_4_1C_4_2C_4_3C_4_4C_4_5C_4_6C_5_1C_5_2C_5_3C_5_4C_5_5C_5_6C_6_1C_6_2C_6_3C_6_4C_6_5C_6_6C_7_1C_7_2C_7_3C_7_4C_7_5C_7_6C_8_1C_8_2C_8_3C_8_4C_8_5C_8_6C_9_1C_9_2C_9_3C_9_4C_9_5C_9_6C_10_1C_10_2C_10_3C_10_4C_10_5C_10_6C_11_1C_11_2C_11_3C_11_4C_11_5C_11_6C_12_1C_12_2C_12_3C_12_4C_12_5C_12_6C_13_1C_13_2C_13_3C_13_4C_13_5C_13_6C_14_1C_14_2C_14_3C_14_4C_14_5C_14_6C_15_1C_15_2C_15_3C_15_4C_15_5C_15_6C_16_1C_16_2C_16_3C_16_4C_16_5C_16_6C_17_1C_17_2C_17_3C_17_4C_17_5C_17_6C_18_1C_18_2C_18_3C_18_4C_18_5C_18_6C_19_1C_19_2C_19_3C_19_4C_19_5C_19_6C_20_1C_20_2C_20_3C_20_4C_20_5C_20_6C_21_1C_21_2C_21_3C_21_4C_21_5C_21_6Trace(Mul(Matrix(6, 9, [[A_1_1,A_1_2,A_1_3,A_1_4,A_1_5,A_1_6,A_1_7,A_1_8,A_1_9],[A_2_1,A_2_2,A_2_3,A_2_4,A_2_5,A_2_6,A_2_7,A_2_8,A_2_9],[A_3_1,A_3_2,A_3_3,A_3_4,A_3_5,A_3_6,A_3_7,A_3_8,A_3_9],[A_4_1,A_4_2,A_4_3,A_4_4,A_4_5,A_4_6,A_4_7,A_4_8,A_4_9],[A_5_1,A_5_2,A_5_3,A_5_4,A_5_5,A_5_6,A_5_7,A_5_8,A_5_9],[A_6_1,A_6_2,A_6_3,A_6_4,A_6_5,A_6_6,A_6_7,A_6_8,A_6_9]]),Matrix(9, 21, [[B_1_1,B_1_2,B_1_3,B_1_4,B_1_5,B_1_6,B_1_7,B_1_8,B_1_9,B_1_10,B_1_11,B_1_12,B_1_13,B_1_14,B_1_15,B_1_16,B_1_17,B_1_18,B_1_19,B_1_20,B_1_21],[B_2_1,B_2_2,B_2_3,B_2_4,B_2_5,B_2_6,B_2_7,B_2_8,B_2_9,B_2_10,B_2_11,B_2_12,B_2_13,B_2_14,B_2_15,B_2_16,B_2_17,B_2_18,B_2_19,B_2_20,B_2_21],[B_3_1,B_3_2,B_3_3,B_3_4,B_3_5,B_3_6,B_3_7,B_3_8,B_3_9,B_3_10,B_3_11,B_3_12,B_3_13,B_3_14,B_3_15,B_3_16,B_3_17,B_3_18,B_3_19,B_3_20,B_3_21],[B_4_1,B_4_2,B_4_3,B_4_4,B_4_5,B_4_6,B_4_7,B_4_8,B_4_9,B_4_10,B_4_11,B_4_12,B_4_13,B_4_14,B_4_15,B_4_16,B_4_17,B_4_18,B_4_19,B_4_20,B_4_21],[B_5_1,B_5_2,B_5_3,B_5_4,B_5_5,B_5_6,B_5_7,B_5_8,B_5_9,B_5_10,B_5_11,B_5_12,B_5_13,B_5_14,B_5_15,B_5_16,B_5_17,B_5_18,B_5_19,B_5_20,B_5_21],[B_6_1,B_6_2,B_6_3,B_6_4,B_6_5,B_6_6,B_6_7,B_6_8,B_6_9,B_6_10,B_6_11,B_6_12,B_6_13,B_6_14,B_6_15,B_6_16,B_6_17,B_6_18,B_6_19,B_6_20,B_6_21],[B_7_1,B_7_2,B_7_3,B_7_4,B_7_5,B_7_6,B_7_7,B_7_8,B_7_9,B_7_10,B_7_11,B_7_12,B_7_13,B_7_14,B_7_15,B_7_16,B_7_17,B_7_18,B_7_19,B_7_20,B_7_21],[B_8_1,B_8_2,B_8_3,B_8_4,B_8_5,B_8_6,B_8_7,B_8_8,B_8_9,B_8_10,B_8_11,B_8_12,B_8_13,B_8_14,B_8_15,B_8_16,B_8_17,B_8_18,B_8_19,B_8_20,B_8_21],[B_9_1,B_9_2,B_9_3,B_9_4,B_9_5,B_9_6,B_9_7,B_9_8,B_9_9,B_9_10,B_9_11,B_9_12,B_9_13,B_9_14,B_9_15,B_9_16,B_9_17,B_9_18,B_9_19,B_9_20,B_9_21]]),Matrix(21, 6, [[C_1_1,C_1_2,C_1_3,C_1_4,C_1_5,C_1_6],[C_2_1,C_2_2,C_2_3,C_2_4,C_2_5,C_2_6],[C_3_1,C_3_2,C_3_3,C_3_4,C_3_5,C_3_6],[C_4_1,C_4_2,C_4_3,C_4_4,C_4_5,C_4_6],[C_5_1,C_5_2,C_5_3,C_5_4,C_5_5,C_5_6],[C_6_1,C_6_2,C_6_3,C_6_4,C_6_5,C_6_6],[C_7_1,C_7_2,C_7_3,C_7_4,C_7_5,C_7_6],[C_8_1,C_8_2,C_8_3,C_8_4,C_8_5,C_8_6],[C_9_1,C_9_2,C_9_3,C_9_4,C_9_5,C_9_6],[C_10_1,C_10_2,C_10_3,C_10_4,C_10_5,C_10_6],[C_11_1,C_11_2,C_11_3,C_11_4,C_11_5,C_11_6],[C_12_1,C_12_2,C_12_3,C_12_4,C_12_5,C_12_6],[C_13_1,C_13_2,C_13_3,C_13_4,C_13_5,C_13_6],[C_14_1,C_14_2,C_14_3,C_14_4,C_14_5,C_14_6],[C_15_1,C_15_2,C_15_3,C_15_4,C_15_5,C_15_6],[C_16_1,C_16_2,C_16_3,C_16_4,C_16_5,C_16_6],[C_17_1,C_17_2,C_17_3,C_17_4,C_17_5,C_17_6],[C_18_1,C_18_2,C_18_3,C_18_4,C_18_5,C_18_6],[C_19_1,C_19_2,C_19_3,C_19_4,C_19_5,C_19_6],[C_20_1,C_20_2,C_20_3,C_20_4,C_20_5,C_20_6],[C_21_1,C_21_2,C_21_3,C_21_4,C_21_5,C_21_6]]))) = Trace(Mul(Matrix(6, 9, [[A_1_1,A_1_2,A_1_3,A_1_4,A_1_5,A_1_6,A_1_7,A_1_8,A_1_9],[A_2_1,A_2_2,A_2_3,A_2_4,A_2_5,A_2_6,A_2_7,A_2_8,A_2_9],[A_3_1,A_3_2,A_3_3,A_3_4,A_3_5,A_3_6,A_3_7,A_3_8,A_3_9],[A_4_1,A_4_2,A_4_3,A_4_4,A_4_5,A_4_6,A_4_7,A_4_8,A_4_9],[A_5_1,A_5_2,A_5_3,A_5_4,A_5_5,A_5_6,A_5_7,A_5_8,A_5_9],[A_6_1,A_6_2,A_6_3,A_6_4,A_6_5,A_6_6,A_6_7,A_6_8,A_6_9]]),Matrix(9, 3, [[B_1_1,B_1_2,B_1_3],[B_2_1,B_2_2,B_2_3],[B_3_1,B_3_2,B_3_3],[B_4_1,B_4_2,B_4_3],[B_5_1,B_5_2,B_5_3],[B_6_1,B_6_2,B_6_3],[B_7_1,B_7_2,B_7_3],[B_8_1,B_8_2,B_8_3],[B_9_1,B_9_2,B_9_3]]),Matrix(3, 6, [[C_1_1,C_1_2,C_1_3,C_1_4,C_1_5,C_1_6],[C_2_1,C_2_2,C_2_3,C_2_4,C_2_5,C_2_6],[C_3_1,C_3_2,C_3_3,C_3_4,C_3_5,C_3_6]])))+Trace(Mul(Matrix(6, 9, [[A_1_1,A_1_2,A_1_3,A_1_4,A_1_5,A_1_6,A_1_7,A_1_8,A_1_9],[A_2_1,A_2_2,A_2_3,A_2_4,A_2_5,A_2_6,A_2_7,A_2_8,A_2_9],[A_3_1,A_3_2,A_3_3,A_3_4,A_3_5,A_3_6,A_3_7,A_3_8,A_3_9],[A_4_1,A_4_2,A_4_3,A_4_4,A_4_5,A_4_6,A_4_7,A_4_8,A_4_9],[A_5_1,A_5_2,A_5_3,A_5_4,A_5_5,A_5_6,A_5_7,A_5_8,A_5_9],[A_6_1,A_6_2,A_6_3,A_6_4,A_6_5,A_6_6,A_6_7,A_6_8,A_6_9]]),Matrix(9, 18, [[B_1_4,B_1_5,B_1_6,B_1_7,B_1_8,B_1_9,B_1_10,B_1_11,B_1_12,B_1_13,B_1_14,B_1_15,B_1_16,B_1_17,B_1_18,B_1_19,B_1_20,B_1_21],[B_2_4,B_2_5,B_2_6,B_2_7,B_2_8,B_2_9,B_2_10,B_2_11,B_2_12,B_2_13,B_2_14,B_2_15,B_2_16,B_2_17,B_2_18,B_2_19,B_2_20,B_2_21],[B_3_4,B_3_5,B_3_6,B_3_7,B_3_8,B_3_9,B_3_10,B_3_11,B_3_12,B_3_13,B_3_14,B_3_15,B_3_16,B_3_17,B_3_18,B_3_19,B_3_20,B_3_21],[B_4_4,B_4_5,B_4_6,B_4_7,B_4_8,B_4_9,B_4_10,B_4_11,B_4_12,B_4_13,B_4_14,B_4_15,B_4_16,B_4_17,B_4_18,B_4_19,B_4_20,B_4_21],[B_5_4,B_5_5,B_5_6,B_5_7,B_5_8,B_5_9,B_5_10,B_5_11,B_5_12,B_5_13,B_5_14,B_5_15,B_5_16,B_5_17,B_5_18,B_5_19,B_5_20,B_5_21],[B_6_4,B_6_5,B_6_6,B_6_7,B_6_8,B_6_9,B_6_10,B_6_11,B_6_12,B_6_13,B_6_14,B_6_15,B_6_16,B_6_17,B_6_18,B_6_19,B_6_20,B_6_21],[B_7_4,B_7_5,B_7_6,B_7_7,B_7_8,B_7_9,B_7_10,B_7_11,B_7_12,B_7_13,B_7_14,B_7_15,B_7_16,B_7_17,B_7_18,B_7_19,B_7_20,B_7_21],[B_8_4,B_8_5,B_8_6,B_8_7,B_8_8,B_8_9,B_8_10,B_8_11,B_8_12,B_8_13,B_8_14,B_8_15,B_8_16,B_8_17,B_8_18,B_8_19,B_8_20,B_8_21],[B_9_4,B_9_5,B_9_6,B_9_7,B_9_8,B_9_9,B_9_10,B_9_11,B_9_12,B_9_13,B_9_14,B_9_15,B_9_16,B_9_17,B_9_18,B_9_19,B_9_20,B_9_21]]),Matrix(18, 6, [[C_4_1,C_4_2,C_4_3,C_4_4,C_4_5,C_4_6],[C_5_1,C_5_2,C_5_3,C_5_4,C_5_5,C_5_6],[C_6_1,C_6_2,C_6_3,C_6_4,C_6_5,C_6_6],[C_7_1,C_7_2,C_7_3,C_7_4,C_7_5,C_7_6],[C_8_1,C_8_2,C_8_3,C_8_4,C_8_5,C_8_6],[C_9_1,C_9_2,C_9_3,C_9_4,C_9_5,C_9_6],[C_10_1,C_10_2,C_10_3,C_10_4,C_10_5,C_10_6],[C_11_1,C_11_2,C_11_3,C_11_4,C_11_5,C_11_6],[C_12_1,C_12_2,C_12_3,C_12_4,C_12_5,C_12_6],[C_13_1,C_13_2,C_13_3,C_13_4,C_13_5,C_13_6],[C_14_1,C_14_2,C_14_3,C_14_4,C_14_5,C_14_6],[C_15_1,C_15_2,C_15_3,C_15_4,C_15_5,C_15_6],[C_16_1,C_16_2,C_16_3,C_16_4,C_16_5,C_16_6],[C_17_1,C_17_2,C_17_3,C_17_4,C_17_5,C_17_6],[C_18_1,C_18_2,C_18_3,C_18_4,C_18_5,C_18_6],[C_19_1,C_19_2,C_19_3,C_19_4,C_19_5,C_19_6],[C_20_1,C_20_2,C_20_3,C_20_4,C_20_5,C_20_6],[C_21_1,C_21_2,C_21_3,C_21_4,C_21_5,C_21_6]])))

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table