Description of fast matrix multiplication algorithm: ⟨6×9×12:435⟩

Algorithm type

21X4Y4Z4+3X6Y2Z2+6X2Y6Z2+6X2Y4Z4+6X2Y2Z6+54X2Y4Z2+12X2Y2Z4+12XY6Z+12XY4Z2+6X3Y2Z+63X2Y2Z2+24XY4Z+12XY2Z3+6X3YZ+12XY3Z+36XY2Z2+12XYZ3+66XY2Z+24XYZ2+42XYZ21X4Y4Z43X6Y2Z26X2Y6Z26X2Y4Z46X2Y2Z654X2Y4Z212X2Y2Z412XY6Z12XY4Z26X3Y2Z63X2Y2Z224XY4Z12XY2Z36X3YZ12XY3Z36XY2Z212XYZ366XY2Z24XYZ242XYZ21*X^4*Y^4*Z^4+3*X^6*Y^2*Z^2+6*X^2*Y^6*Z^2+6*X^2*Y^4*Z^4+6*X^2*Y^2*Z^6+54*X^2*Y^4*Z^2+12*X^2*Y^2*Z^4+12*X*Y^6*Z+12*X*Y^4*Z^2+6*X^3*Y^2*Z+63*X^2*Y^2*Z^2+24*X*Y^4*Z+12*X*Y^2*Z^3+6*X^3*Y*Z+12*X*Y^3*Z+36*X*Y^2*Z^2+12*X*Y*Z^3+66*X*Y^2*Z+24*X*Y*Z^2+42*X*Y*Z

Algorithm definition

The algorithm ⟨6×9×12:435⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨3×3×4:29⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table