Description of fast matrix multiplication algorithm: ⟨6×9×10:373⟩

Algorithm type

10X4Y4Z4+X2Y4Z6+X6Y3Z2+2X2Y7Z2+2X6Y2Z2+2X4Y4Z2+7X3Y3Z4+2X2Y4Z4+5X2Y2Z6+X2Y5Z2+3X5YZ2+X4Y2Z2+10X2Y4Z2+X2Y2Z4+3X3Y2Z+95X2Y2Z2+6XY4Z+3XY3Z2+3XY2Z3+24X3YZ+9X2Y2Z+2X2YZ2+9XY3Z+12XY2Z2+27XYZ3+12X2YZ+63XY2Z+21XYZ2+36XYZ10X4Y4Z4X2Y4Z6X6Y3Z22X2Y7Z22X6Y2Z22X4Y4Z27X3Y3Z42X2Y4Z45X2Y2Z6X2Y5Z23X5YZ2X4Y2Z210X2Y4Z2X2Y2Z43X3Y2Z95X2Y2Z26XY4Z3XY3Z23XY2Z324X3YZ9X2Y2Z2X2YZ29XY3Z12XY2Z227XYZ312X2YZ63XY2Z21XYZ236XYZ10*X^4*Y^4*Z^4+X^2*Y^4*Z^6+X^6*Y^3*Z^2+2*X^2*Y^7*Z^2+2*X^6*Y^2*Z^2+2*X^4*Y^4*Z^2+7*X^3*Y^3*Z^4+2*X^2*Y^4*Z^4+5*X^2*Y^2*Z^6+X^2*Y^5*Z^2+3*X^5*Y*Z^2+X^4*Y^2*Z^2+10*X^2*Y^4*Z^2+X^2*Y^2*Z^4+3*X^3*Y^2*Z+95*X^2*Y^2*Z^2+6*X*Y^4*Z+3*X*Y^3*Z^2+3*X*Y^2*Z^3+24*X^3*Y*Z+9*X^2*Y^2*Z+2*X^2*Y*Z^2+9*X*Y^3*Z+12*X*Y^2*Z^2+27*X*Y*Z^3+12*X^2*Y*Z+63*X*Y^2*Z+21*X*Y*Z^2+36*X*Y*Z

Algorithm definition

The algorithm ⟨6×9×10:373⟩ could be constructed using the following decomposition:

⟨6×9×10:373⟩ = ⟨3×5×5:58⟩ + ⟨3×5×5:58⟩ + ⟨3×4×5:47⟩ + ⟨3×5×5:58⟩ + ⟨3×4×5:47⟩ + ⟨3×5×5:58⟩ + ⟨3×4×5:47⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10C_1_1C_1_2C_1_3C_1_4C_1_5C_1_6C_2_1C_2_2C_2_3C_2_4C_2_5C_2_6C_3_1C_3_2C_3_3C_3_4C_3_5C_3_6C_4_1C_4_2C_4_3C_4_4C_4_5C_4_6C_5_1C_5_2C_5_3C_5_4C_5_5C_5_6C_6_1C_6_2C_6_3C_6_4C_6_5C_6_6C_7_1C_7_2C_7_3C_7_4C_7_5C_7_6C_8_1C_8_2C_8_3C_8_4C_8_5C_8_6C_9_1C_9_2C_9_3C_9_4C_9_5C_9_6C_10_1C_10_2C_10_3C_10_4C_10_5C_10_6=TraceMulA_2_5A_3_1+A_2_6A_3_2+A_2_7A_3_3+A_2_8A_3_4+A_2_9A_5_5A_4_1+A_5_6A_4_2+A_5_7A_4_3+A_5_8A_4_4+A_5_9A_6_5A_1_1+A_6_6A_1_2+A_6_7A_1_3+A_6_8A_1_4+A_6_9B_5_6B_5_7B_5_8B_5_9B_5_10B_1_1+B_6_6B_1_2+B_6_7B_1_3+B_6_8B_1_4+B_6_9B_1_5+B_6_10B_2_1+B_7_6B_2_2+B_7_7B_2_3+B_7_8B_2_4+B_7_9B_2_5+B_7_10B_3_1+B_8_6B_3_2+B_8_7B_3_3+B_8_8B_3_4+B_8_9B_3_5+B_8_10B_4_1+B_9_6B_4_2+B_9_7B_4_3+B_9_8B_4_4+B_9_9B_4_5+B_9_10C_1_3+C_6_2C_1_4+C_6_5C_1_1+C_6_6C_2_3+C_7_2C_2_4+C_7_5C_2_1+C_7_6C_3_3+C_8_2C_3_4+C_8_5C_3_1+C_8_6C_4_3+C_9_2C_4_4+C_9_5C_4_1+C_9_6C_5_3+C_10_2C_5_4+C_10_5C_5_1+C_10_6+TraceMul-A_2_5+A_3_5-A_2_6+A_3_6-A_2_7+A_3_7-A_2_8+A_3_8-A_2_9+A_3_9A_4_5-A_5_5A_4_6-A_5_6A_4_7-A_5_7A_4_8-A_5_8A_4_9-A_5_9A_1_5-A_6_5A_1_6-A_6_6A_1_7-A_6_7A_1_8-A_6_8A_1_9-A_6_9B_5_1+B_5_6B_5_2+B_5_7B_5_3+B_5_8B_5_4+B_5_9B_5_5+B_5_10B_6_1+B_6_6B_6_2+B_6_7B_6_3+B_6_8B_6_4+B_6_9B_6_5+B_6_10B_7_1+B_7_6B_7_2+B_7_7B_7_3+B_7_8B_7_4+B_7_9B_7_5+B_7_10B_8_1+B_8_6B_8_2+B_8_7B_8_3+B_8_8B_8_4+B_8_9B_8_5+B_8_10B_9_1+B_9_6B_9_2+B_9_7B_9_3+B_9_8B_9_4+B_9_9B_9_5+B_9_10C_1_3C_1_4C_1_1C_2_3C_2_4C_2_1C_3_3C_3_4C_3_1C_4_3C_4_4C_4_1C_5_3C_5_4C_5_1+TraceMul-A_3_1+A_2_1A_2_2-A_3_2A_2_3-A_3_3-A_3_4+A_2_4-A_4_1+A_5_1-A_4_2+A_5_2-A_4_3+A_5_3-A_4_4+A_5_4-A_1_1+A_6_1-A_1_2+A_6_2-A_1_3+A_6_3-A_1_4+A_6_4B_1_1+B_1_6B_1_2+B_1_7B_1_3+B_1_8B_1_4+B_1_9B_1_5+B_1_10B_2_1+B_2_6B_2_2+B_2_7B_2_3+B_2_8B_2_4+B_2_9B_2_5+B_2_10B_3_1+B_3_6B_3_2+B_3_7B_3_3+B_3_8B_3_4+B_3_9B_3_5+B_3_10B_4_1+B_4_6B_4_2+B_4_7B_4_3+B_4_8B_4_4+B_4_9B_4_5+B_4_10C_6_2C_6_5C_6_6C_7_2C_7_5C_7_6C_8_2C_8_5C_8_6C_9_2C_9_5C_9_6C_10_2C_10_5C_10_6+TraceMulA_3_5A_3_1+A_3_6A_3_2+A_3_7A_3_3+A_3_8A_3_4+A_3_9A_4_5A_4_1+A_4_6A_4_2+A_4_7A_4_3+A_4_8A_4_4+A_4_9A_1_5A_1_1+A_1_6A_1_2+A_1_7A_1_3+A_1_8A_1_4+A_1_9B_5_6B_5_7B_5_8B_5_9B_5_10B_6_6B_6_7B_6_8B_6_9B_6_10B_7_6B_7_7B_7_8B_7_9B_7_10B_8_6B_8_7B_8_8B_8_9B_8_10B_9_6B_9_7B_9_8B_9_9B_9_10-C_1_3+C_6_3-C_1_4+C_6_4-C_1_1+C_6_1-C_2_3+C_7_3-C_2_4+C_7_4-C_2_1+C_7_1-C_3_3+C_8_3-C_3_4+C_8_4-C_3_1+C_8_1-C_4_3+C_9_3-C_4_4+C_9_4-C_4_1+C_9_1-C_5_3+C_10_3-C_5_4+C_10_4-C_5_1+C_10_1+TraceMulA_3_1A_3_2A_3_3A_3_4A_4_1A_4_2A_4_3A_4_4A_1_1A_1_2A_1_3A_1_4B_1_6-B_6_6B_1_7-B_6_7B_1_8-B_6_8B_1_9-B_6_9B_1_10-B_6_10B_2_6-B_7_6B_2_7-B_7_7B_2_8-B_7_8B_2_9-B_7_9B_2_10-B_7_10B_3_6-B_8_6B_3_7-B_8_7B_3_8-B_8_8B_3_9-B_8_9B_3_10-B_8_10B_4_6-B_9_6B_4_7-B_9_7B_4_8-B_9_8B_4_9-B_9_9B_4_10-B_9_10C_6_2+C_6_3C_6_4+C_6_5C_6_1+C_6_6C_7_2+C_7_3C_7_4+C_7_5C_7_1+C_7_6C_8_2+C_8_3C_8_4+C_8_5C_8_1+C_8_6C_9_2+C_9_3C_9_4+C_9_5C_9_1+C_9_6C_10_2+C_10_3C_10_4+C_10_5C_10_1+C_10_6+TraceMulA_2_5A_2_6A_2_7A_2_8A_2_9A_5_5A_5_6A_5_7A_5_8A_5_9A_6_5A_6_6A_6_7A_6_8A_6_9B_5_1B_5_2B_5_3B_5_4B_5_5-B_1_1+B_6_1-B_1_2+B_6_2-B_1_3+B_6_3-B_1_4+B_6_4-B_1_5+B_6_5-B_2_1+B_7_1-B_2_2+B_7_2-B_2_3+B_7_3-B_2_4+B_7_4-B_2_5+B_7_5-B_3_1+B_8_1-B_3_2+B_8_2-B_3_3+B_8_3-B_3_4+B_8_4-B_3_5+B_8_5-B_4_1+B_9_1-B_4_2+B_9_2-B_4_3+B_9_3-B_4_4+B_9_4-B_4_5+B_9_5C_1_3+C_1_2C_1_4+C_1_5C_1_1+C_1_6C_2_3+C_2_2C_2_4+C_2_5C_2_1+C_2_6C_3_3+C_3_2C_3_4+C_3_5C_3_1+C_3_6C_4_3+C_4_2C_4_4+C_4_5C_4_1+C_4_6C_5_2+C_5_3C_5_4+C_5_5C_5_1+C_5_6+TraceMulA_2_1+A_2_6A_2_2+A_2_7A_2_3+A_2_8A_2_4+A_2_9A_5_1+A_5_6A_5_2+A_5_7A_5_3+A_5_8A_5_4+A_5_9A_6_1+A_6_6A_6_2+A_6_7A_6_3+A_6_8A_6_4+A_6_9B_1_1B_1_2B_1_3B_1_4B_1_5B_2_1B_2_2B_2_3B_2_4B_2_5B_3_1B_3_2B_3_3B_3_4B_3_5B_4_1B_4_2B_4_3B_4_4B_4_5C_1_2-C_6_2C_1_5-C_6_5C_1_6-C_6_6C_2_2-C_7_2C_2_5-C_7_5C_2_6-C_7_6C_3_2-C_8_2C_3_5-C_8_5C_3_6-C_8_6-C_9_2+C_4_2C_4_5-C_9_5C_4_6-C_9_6C_5_2-C_10_2C_5_5-C_10_5C_5_6-C_10_6

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table