Description of fast matrix multiplication algorithm: ⟨6×8×16:511⟩

Algorithm type

2X4Y8Z4+2X2Y8Z6+4X4Y6Z4+7X4Y4Z6+10X4Y4Z4+3X2Y8Z2+4X2Y6Z4+5X2Y4Z6+X4Y4Z2+14X2Y2Z6+14X2Y4Z2+7X2Y2Z4+12XY4Z3+24X2Y3Z2+42X2Y2Z3+72X2Y2Z2+18XY4Z+24XY3Z2+30XY2Z3+6X2Y2Z+84XYZ3+12XY2Z+42XYZ2+72XYZ2X4Y8Z42X2Y8Z64X4Y6Z47X4Y4Z610X4Y4Z43X2Y8Z24X2Y6Z45X2Y4Z6X4Y4Z214X2Y2Z614X2Y4Z27X2Y2Z412XY4Z324X2Y3Z242X2Y2Z372X2Y2Z218XY4Z24XY3Z230XY2Z36X2Y2Z84XYZ312XY2Z42XYZ272XYZ2*X^4*Y^8*Z^4+2*X^2*Y^8*Z^6+4*X^4*Y^6*Z^4+7*X^4*Y^4*Z^6+10*X^4*Y^4*Z^4+3*X^2*Y^8*Z^2+4*X^2*Y^6*Z^4+5*X^2*Y^4*Z^6+X^4*Y^4*Z^2+14*X^2*Y^2*Z^6+14*X^2*Y^4*Z^2+7*X^2*Y^2*Z^4+12*X*Y^4*Z^3+24*X^2*Y^3*Z^2+42*X^2*Y^2*Z^3+72*X^2*Y^2*Z^2+18*X*Y^4*Z+24*X*Y^3*Z^2+30*X*Y^2*Z^3+6*X^2*Y^2*Z+84*X*Y*Z^3+12*X*Y^2*Z+42*X*Y*Z^2+72*X*Y*Z

Algorithm definition

The algorithm ⟨6×8×16:511⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨3×4×8:73⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table