Description of fast matrix multiplication algorithm: ⟨6×7×24:672⟩

Algorithm type

26X4Y4Z4+8X3Y4Z4+2X3Y3Z4+32X2Y4Z2+96X2Y3Z3+32X2Y2Z4+4XY4Z2+144XY3Z3+4XY2Z4+108X2Y2Z2+108XY2Z+108XYZ226X4Y4Z48X3Y4Z42X3Y3Z432X2Y4Z296X2Y3Z332X2Y2Z44XY4Z2144XY3Z34XY2Z4108X2Y2Z2108XY2Z108XYZ226*X^4*Y^4*Z^4+8*X^3*Y^4*Z^4+2*X^3*Y^3*Z^4+32*X^2*Y^4*Z^2+96*X^2*Y^3*Z^3+32*X^2*Y^2*Z^4+4*X*Y^4*Z^2+144*X*Y^3*Z^3+4*X*Y^2*Z^4+108*X^2*Y^2*Z^2+108*X*Y^2*Z+108*X*Y*Z^2

Algorithm definition

The algorithm ⟨6×7×24:672⟩ is the (Kronecker) tensor product of ⟨1×1×2:2⟩ with ⟨6×7×12:336⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table