Description of fast matrix multiplication algorithm: ⟨6×6×7:183⟩

Algorithm type

2X5YZ+2X3Y2Z2+2X2Y3Z2+5X2Y2Z3+60X2Y2Z2+X2YZ3+XYZ4+8X3YZ+X2Y2Z+2X2YZ2+XY3Z+6XYZ3+23X2YZ+26XY2Z+21XYZ2+22XYZ2X5YZ2X3Y2Z22X2Y3Z25X2Y2Z360X2Y2Z2X2YZ3XYZ48X3YZX2Y2Z2X2YZ2XY3Z6XYZ323X2YZ26XY2Z21XYZ222XYZ2*X^5*Y*Z+2*X^3*Y^2*Z^2+2*X^2*Y^3*Z^2+5*X^2*Y^2*Z^3+60*X^2*Y^2*Z^2+X^2*Y*Z^3+X*Y*Z^4+8*X^3*Y*Z+X^2*Y^2*Z+2*X^2*Y*Z^2+X*Y^3*Z+6*X*Y*Z^3+23*X^2*Y*Z+26*X*Y^2*Z+21*X*Y*Z^2+22*X*Y*Z

Algorithm definition

The algorithm ⟨6×6×7:183⟩ is taken from:

Manuel Kauers and Issaac Wood. Consequences of the Moosbauer-Poole algorithms. Technical Report 2505.05896, arXiv, May 2025. [ arXiv ]

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table