Description of fast matrix multiplication algorithm: ⟨6×6×32:763⟩

Algorithm type

32X4Y6Z6+48X2Y6Z6+7X4Y4Z4+X6Y2Z2+2X2Y6Z2+2X2Y4Z4+2X2Y2Z6+4X2Y4Z2+192X2Y3Z3+4X2Y2Z4+288XY3Z3+49X2Y2Z2+6X3YZ+12XY3Z+12XY2Z2+12XYZ3+24XY2Z+24XYZ2+42XYZ32X4Y6Z648X2Y6Z67X4Y4Z4X6Y2Z22X2Y6Z22X2Y4Z42X2Y2Z64X2Y4Z2192X2Y3Z34X2Y2Z4288XY3Z349X2Y2Z26X3YZ12XY3Z12XY2Z212XYZ324XY2Z24XYZ242XYZ32*X^4*Y^6*Z^6+48*X^2*Y^6*Z^6+7*X^4*Y^4*Z^4+X^6*Y^2*Z^2+2*X^2*Y^6*Z^2+2*X^2*Y^4*Z^4+2*X^2*Y^2*Z^6+4*X^2*Y^4*Z^2+192*X^2*Y^3*Z^3+4*X^2*Y^2*Z^4+288*X*Y^3*Z^3+49*X^2*Y^2*Z^2+6*X^3*Y*Z+12*X*Y^3*Z+12*X*Y^2*Z^2+12*X*Y*Z^3+24*X*Y^2*Z+24*X*Y*Z^2+42*X*Y*Z

Algorithm definition

The algorithm ⟨6×6×32:763⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨3×3×16:109⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table