Description of fast matrix multiplication algorithm: ⟨6×28×28:2926⟩

Algorithm type

210X4Y4Z4+16XY9Z+63X6Y2Z2+42X4Y4Z2+122X2Y6Z2+42X2Y4Z4+63X2Y2Z6+16X2Y6Z+16XY6Z2+21X4Y2Z2+371X2Y4Z2+21X2Y2Z4+116XY6Z+24X3Y3Z+28X2Y4Z+28XY4Z2+24XY3Z3+42X3Y2Z+8X2Y3Z+403X2Y2Z2+154XY4Z+8XY3Z2+42XY2Z3+102X3YZ+82X2Y2Z+92XY3Z+82XY2Z2+102XYZ3+34X2YZ+416XY2Z+34XYZ2+102XYZ210X4Y4Z416XY9Z63X6Y2Z242X4Y4Z2122X2Y6Z242X2Y4Z463X2Y2Z616X2Y6Z16XY6Z221X4Y2Z2371X2Y4Z221X2Y2Z4116XY6Z24X3Y3Z28X2Y4Z28XY4Z224XY3Z342X3Y2Z8X2Y3Z403X2Y2Z2154XY4Z8XY3Z242XY2Z3102X3YZ82X2Y2Z92XY3Z82XY2Z2102XYZ334X2YZ416XY2Z34XYZ2102XYZ210*X^4*Y^4*Z^4+16*X*Y^9*Z+63*X^6*Y^2*Z^2+42*X^4*Y^4*Z^2+122*X^2*Y^6*Z^2+42*X^2*Y^4*Z^4+63*X^2*Y^2*Z^6+16*X^2*Y^6*Z+16*X*Y^6*Z^2+21*X^4*Y^2*Z^2+371*X^2*Y^4*Z^2+21*X^2*Y^2*Z^4+116*X*Y^6*Z+24*X^3*Y^3*Z+28*X^2*Y^4*Z+28*X*Y^4*Z^2+24*X*Y^3*Z^3+42*X^3*Y^2*Z+8*X^2*Y^3*Z+403*X^2*Y^2*Z^2+154*X*Y^4*Z+8*X*Y^3*Z^2+42*X*Y^2*Z^3+102*X^3*Y*Z+82*X^2*Y^2*Z+92*X*Y^3*Z+82*X*Y^2*Z^2+102*X*Y*Z^3+34*X^2*Y*Z+416*X*Y^2*Z+34*X*Y*Z^2+102*X*Y*Z

Algorithm definition

The algorithm ⟨6×28×28:2926⟩ is the (Kronecker) tensor product of ⟨2×7×7:77⟩ with ⟨3×4×4:38⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table