Description of fast matrix multiplication algorithm: ⟨6×27×30:2880⟩

Algorithm type

96X4Y9Z6+112X2Y12Z3+144X2Y9Z6+192X4Y6Z6+168XY12Z3+240X2Y9Z3+288X2Y6Z6+360XY9Z3+144X2Y6Z3+216XY6Z3+368X2Y3Z3+552XY3Z396X4Y9Z6112X2Y12Z3144X2Y9Z6192X4Y6Z6168XY12Z3240X2Y9Z3288X2Y6Z6360XY9Z3144X2Y6Z3216XY6Z3368X2Y3Z3552XY3Z396*X^4*Y^9*Z^6+112*X^2*Y^12*Z^3+144*X^2*Y^9*Z^6+192*X^4*Y^6*Z^6+168*X*Y^12*Z^3+240*X^2*Y^9*Z^3+288*X^2*Y^6*Z^6+360*X*Y^9*Z^3+144*X^2*Y^6*Z^3+216*X*Y^6*Z^3+368*X^2*Y^3*Z^3+552*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨6×27×30:2880⟩ is the (Kronecker) tensor product of ⟨2×9×5:72⟩ with ⟨3×3×6:40⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table