Description of fast matrix multiplication algorithm: ⟨6×25×32:2880⟩

Algorithm type

24X4Y12Z4+8X6Y4Z6+216X4Y8Z4+64X2Y12Z2+8X2Y8Z6+56X2Y8Z4+40XY12Z+8X6Y4Z2+344X2Y8Z2+80X2Y4Z6+8XY8Z3+56XY8Z2+8X4Y4Z2+8X3Y4Z3+112X2Y4Z4+128XY8Z+8X3Y4Z+32X2Y4Z2+80XY4Z3+16X3YZ3+8X2Y4Z+48X2Y3Z2+112XY4Z2+432X2Y2Z2+32XY4Z+16XY2Z3+16X3YZ+80XY3Z+112XY2Z2+160XYZ3+16X2YZ+256XY2Z+224XYZ2+64XYZ24X4Y12Z48X6Y4Z6216X4Y8Z464X2Y12Z28X2Y8Z656X2Y8Z440XY12Z8X6Y4Z2344X2Y8Z280X2Y4Z68XY8Z356XY8Z28X4Y4Z28X3Y4Z3112X2Y4Z4128XY8Z8X3Y4Z32X2Y4Z280XY4Z316X3YZ38X2Y4Z48X2Y3Z2112XY4Z2432X2Y2Z232XY4Z16XY2Z316X3YZ80XY3Z112XY2Z2160XYZ316X2YZ256XY2Z224XYZ264XYZ24*X^4*Y^12*Z^4+8*X^6*Y^4*Z^6+216*X^4*Y^8*Z^4+64*X^2*Y^12*Z^2+8*X^2*Y^8*Z^6+56*X^2*Y^8*Z^4+40*X*Y^12*Z+8*X^6*Y^4*Z^2+344*X^2*Y^8*Z^2+80*X^2*Y^4*Z^6+8*X*Y^8*Z^3+56*X*Y^8*Z^2+8*X^4*Y^4*Z^2+8*X^3*Y^4*Z^3+112*X^2*Y^4*Z^4+128*X*Y^8*Z+8*X^3*Y^4*Z+32*X^2*Y^4*Z^2+80*X*Y^4*Z^3+16*X^3*Y*Z^3+8*X^2*Y^4*Z+48*X^2*Y^3*Z^2+112*X*Y^4*Z^2+432*X^2*Y^2*Z^2+32*X*Y^4*Z+16*X*Y^2*Z^3+16*X^3*Y*Z+80*X*Y^3*Z+112*X*Y^2*Z^2+160*X*Y*Z^3+16*X^2*Y*Z+256*X*Y^2*Z+224*X*Y*Z^2+64*X*Y*Z

Algorithm definition

The algorithm ⟨6×25×32:2880⟩ is the (Kronecker) tensor product of ⟨2×5×4:32⟩ with ⟨3×5×8:90⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table