Description of fast matrix multiplication algorithm: ⟨6×25×28:2528⟩

Algorithm type

16X4Y12Z4+16X2Y16Z2+16XY16Z+192X4Y8Z4+48X2Y12Z2+48X2Y8Z4+32XY12Z+16X6Y4Z2+304X2Y8Z2+56X2Y4Z6+48XY8Z2+16X4Y4Z2+96X2Y4Z4+112XY8Z+16X3Y4Z+32X2Y4Z2+56XY4Z3+16X2Y4Z+32X2Y3Z2+96XY4Z2+384X2Y2Z2+64XY4Z+32X3YZ+64XY3Z+96XY2Z2+112XYZ3+32X2YZ+224XY2Z+192XYZ2+64XYZ16X4Y12Z416X2Y16Z216XY16Z192X4Y8Z448X2Y12Z248X2Y8Z432XY12Z16X6Y4Z2304X2Y8Z256X2Y4Z648XY8Z216X4Y4Z296X2Y4Z4112XY8Z16X3Y4Z32X2Y4Z256XY4Z316X2Y4Z32X2Y3Z296XY4Z2384X2Y2Z264XY4Z32X3YZ64XY3Z96XY2Z2112XYZ332X2YZ224XY2Z192XYZ264XYZ16*X^4*Y^12*Z^4+16*X^2*Y^16*Z^2+16*X*Y^16*Z+192*X^4*Y^8*Z^4+48*X^2*Y^12*Z^2+48*X^2*Y^8*Z^4+32*X*Y^12*Z+16*X^6*Y^4*Z^2+304*X^2*Y^8*Z^2+56*X^2*Y^4*Z^6+48*X*Y^8*Z^2+16*X^4*Y^4*Z^2+96*X^2*Y^4*Z^4+112*X*Y^8*Z+16*X^3*Y^4*Z+32*X^2*Y^4*Z^2+56*X*Y^4*Z^3+16*X^2*Y^4*Z+32*X^2*Y^3*Z^2+96*X*Y^4*Z^2+384*X^2*Y^2*Z^2+64*X*Y^4*Z+32*X^3*Y*Z+64*X*Y^3*Z+96*X*Y^2*Z^2+112*X*Y*Z^3+32*X^2*Y*Z+224*X*Y^2*Z+192*X*Y*Z^2+64*X*Y*Z

Algorithm definition

The algorithm ⟨6×25×28:2528⟩ is the (Kronecker) tensor product of ⟨2×5×4:32⟩ with ⟨3×5×7:79⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table