Description of fast matrix multiplication algorithm: ⟨6×25×28:2560⟩

Algorithm type

16X4Y16Z4+32X4Y12Z4+40X2Y16Z2+8X2Y12Z4+24XY16Z+160X4Y8Z4+88X2Y12Z2+8XY12Z2+32X2Y8Z4+56XY12Z+232X2Y8Z2+16X2Y4Z6+32XY8Z2+72X2Y4Z4+72XY8Z+184X2Y4Z2+16XY4Z3+64X2Y3Z2+72XY4Z2+320X2Y2Z2+200XY4Z+16XY3Z2+112XY3Z+64XY2Z2+32XYZ3+144XY2Z+144XYZ2+304XYZ16X4Y16Z432X4Y12Z440X2Y16Z28X2Y12Z424XY16Z160X4Y8Z488X2Y12Z28XY12Z232X2Y8Z456XY12Z232X2Y8Z216X2Y4Z632XY8Z272X2Y4Z472XY8Z184X2Y4Z216XY4Z364X2Y3Z272XY4Z2320X2Y2Z2200XY4Z16XY3Z2112XY3Z64XY2Z232XYZ3144XY2Z144XYZ2304XYZ16*X^4*Y^16*Z^4+32*X^4*Y^12*Z^4+40*X^2*Y^16*Z^2+8*X^2*Y^12*Z^4+24*X*Y^16*Z+160*X^4*Y^8*Z^4+88*X^2*Y^12*Z^2+8*X*Y^12*Z^2+32*X^2*Y^8*Z^4+56*X*Y^12*Z+232*X^2*Y^8*Z^2+16*X^2*Y^4*Z^6+32*X*Y^8*Z^2+72*X^2*Y^4*Z^4+72*X*Y^8*Z+184*X^2*Y^4*Z^2+16*X*Y^4*Z^3+64*X^2*Y^3*Z^2+72*X*Y^4*Z^2+320*X^2*Y^2*Z^2+200*X*Y^4*Z+16*X*Y^3*Z^2+112*X*Y^3*Z+64*X*Y^2*Z^2+32*X*Y*Z^3+144*X*Y^2*Z+144*X*Y*Z^2+304*X*Y*Z

Algorithm definition

The algorithm ⟨6×25×28:2560⟩ is the (Kronecker) tensor product of ⟨2×5×4:32⟩ with ⟨3×5×7:80⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table