Description of fast matrix multiplication algorithm: ⟨6×25×28:2632⟩

Algorithm type

52X4Y6Z4+10XY12Z+8X2Y9Z2+8X4Y6Z2+130X4Y4Z4+65X2Y8Z2+4X2Y6Z4+16X6Y3Z2+10X2Y8Z+12X2Y3Z6+22XY9Z+5XY8Z2+40X6Y2Z2+20X4Y4Z2+195X2Y6Z2+10X2Y4Z4+30X2Y2Z6+40XY8Z+24X4Y3Z2+22X2Y6Z+12X2Y3Z4+11XY6Z2+60X4Y2Z2+20X3Y4Z+171X2Y4Z2+30X2Y2Z4+102XY6Z+15XY4Z3+44X3Y3Z+44X2Y4Z+20X2Y3Z2+22XY4Z2+33XY3Z3+28X3Y2Z+66X2Y3Z+297X2Y2Z2+81XY4Z+33XY3Z2+21XY2Z3+76X3YZ+80X2Y2Z+93XY3Z+40XY2Z2+57XYZ3+114X2YZ+187XY2Z+57XYZ2+95XYZ52X4Y6Z410XY12Z8X2Y9Z28X4Y6Z2130X4Y4Z465X2Y8Z24X2Y6Z416X6Y3Z210X2Y8Z12X2Y3Z622XY9Z5XY8Z240X6Y2Z220X4Y4Z2195X2Y6Z210X2Y4Z430X2Y2Z640XY8Z24X4Y3Z222X2Y6Z12X2Y3Z411XY6Z260X4Y2Z220X3Y4Z171X2Y4Z230X2Y2Z4102XY6Z15XY4Z344X3Y3Z44X2Y4Z20X2Y3Z222XY4Z233XY3Z328X3Y2Z66X2Y3Z297X2Y2Z281XY4Z33XY3Z221XY2Z376X3YZ80X2Y2Z93XY3Z40XY2Z257XYZ3114X2YZ187XY2Z57XYZ295XYZ52*X^4*Y^6*Z^4+10*X*Y^12*Z+8*X^2*Y^9*Z^2+8*X^4*Y^6*Z^2+130*X^4*Y^4*Z^4+65*X^2*Y^8*Z^2+4*X^2*Y^6*Z^4+16*X^6*Y^3*Z^2+10*X^2*Y^8*Z+12*X^2*Y^3*Z^6+22*X*Y^9*Z+5*X*Y^8*Z^2+40*X^6*Y^2*Z^2+20*X^4*Y^4*Z^2+195*X^2*Y^6*Z^2+10*X^2*Y^4*Z^4+30*X^2*Y^2*Z^6+40*X*Y^8*Z+24*X^4*Y^3*Z^2+22*X^2*Y^6*Z+12*X^2*Y^3*Z^4+11*X*Y^6*Z^2+60*X^4*Y^2*Z^2+20*X^3*Y^4*Z+171*X^2*Y^4*Z^2+30*X^2*Y^2*Z^4+102*X*Y^6*Z+15*X*Y^4*Z^3+44*X^3*Y^3*Z+44*X^2*Y^4*Z+20*X^2*Y^3*Z^2+22*X*Y^4*Z^2+33*X*Y^3*Z^3+28*X^3*Y^2*Z+66*X^2*Y^3*Z+297*X^2*Y^2*Z^2+81*X*Y^4*Z+33*X*Y^3*Z^2+21*X*Y^2*Z^3+76*X^3*Y*Z+80*X^2*Y^2*Z+93*X*Y^3*Z+40*X*Y^2*Z^2+57*X*Y*Z^3+114*X^2*Y*Z+187*X*Y^2*Z+57*X*Y*Z^2+95*X*Y*Z

Algorithm definition

The algorithm ⟨6×25×28:2632⟩ is the (Kronecker) tensor product of ⟨2×5×7:56⟩ with ⟨3×5×4:47⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table