Description of fast matrix multiplication algorithm: ⟨6×25×25:2320⟩

Algorithm type

8XY12Z+10X6Y4Z2+170X4Y4Z4+20X2Y8Z2+10X2Y4Z6+4XY9Z+50X6Y2Z2+20X4Y4Z2+4X3Y6Z+78X2Y6Z2+20X2Y4Z4+50X2Y2Z6+20XY8Z+4XY6Z3+8X2Y6Z+8XY6Z2+10X4Y2Z2+10X3Y4Z+300X2Y4Z2+10X2Y2Z4+62XY6Z+10XY4Z3+20X3Y3Z+20X2Y4Z+20XY4Z2+20XY3Z3+66X3Y2Z+4X2Y3Z+342X2Y2Z2+162XY4Z+4XY3Z2+66XY2Z3+80X3YZ+42X2Y2Z+44XY3Z+42XY2Z2+80XYZ3+16X2YZ+278XY2Z+16XYZ2+112XYZ8XY12Z10X6Y4Z2170X4Y4Z420X2Y8Z210X2Y4Z64XY9Z50X6Y2Z220X4Y4Z24X3Y6Z78X2Y6Z220X2Y4Z450X2Y2Z620XY8Z4XY6Z38X2Y6Z8XY6Z210X4Y2Z210X3Y4Z300X2Y4Z210X2Y2Z462XY6Z10XY4Z320X3Y3Z20X2Y4Z20XY4Z220XY3Z366X3Y2Z4X2Y3Z342X2Y2Z2162XY4Z4XY3Z266XY2Z380X3YZ42X2Y2Z44XY3Z42XY2Z280XYZ316X2YZ278XY2Z16XYZ2112XYZ8*X*Y^12*Z+10*X^6*Y^4*Z^2+170*X^4*Y^4*Z^4+20*X^2*Y^8*Z^2+10*X^2*Y^4*Z^6+4*X*Y^9*Z+50*X^6*Y^2*Z^2+20*X^4*Y^4*Z^2+4*X^3*Y^6*Z+78*X^2*Y^6*Z^2+20*X^2*Y^4*Z^4+50*X^2*Y^2*Z^6+20*X*Y^8*Z+4*X*Y^6*Z^3+8*X^2*Y^6*Z+8*X*Y^6*Z^2+10*X^4*Y^2*Z^2+10*X^3*Y^4*Z+300*X^2*Y^4*Z^2+10*X^2*Y^2*Z^4+62*X*Y^6*Z+10*X*Y^4*Z^3+20*X^3*Y^3*Z+20*X^2*Y^4*Z+20*X*Y^4*Z^2+20*X*Y^3*Z^3+66*X^3*Y^2*Z+4*X^2*Y^3*Z+342*X^2*Y^2*Z^2+162*X*Y^4*Z+4*X*Y^3*Z^2+66*X*Y^2*Z^3+80*X^3*Y*Z+42*X^2*Y^2*Z+44*X*Y^3*Z+42*X*Y^2*Z^2+80*X*Y*Z^3+16*X^2*Y*Z+278*X*Y^2*Z+16*X*Y*Z^2+112*X*Y*Z

Algorithm definition

The algorithm ⟨6×25×25:2320⟩ is the (Kronecker) tensor product of ⟨2×5×5:40⟩ with ⟨3×5×5:58⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table