Description of fast matrix multiplication algorithm: ⟨6×24×30:2560⟩

Algorithm type

16X4Y12Z6+16X2Y15Z3+24X2Y12Z6+128X4Y9Z6+24XY15Z3+160X2Y12Z3+192X2Y9Z6+112X4Y6Z6+240XY12Z3+176X2Y9Z3+168X2Y6Z6+264XY9Z3+144X2Y6Z3+216XY6Z3+272X2Y3Z3+408XY3Z316X4Y12Z616X2Y15Z324X2Y12Z6128X4Y9Z624XY15Z3160X2Y12Z3192X2Y9Z6112X4Y6Z6240XY12Z3176X2Y9Z3168X2Y6Z6264XY9Z3144X2Y6Z3216XY6Z3272X2Y3Z3408XY3Z316*X^4*Y^12*Z^6+16*X^2*Y^15*Z^3+24*X^2*Y^12*Z^6+128*X^4*Y^9*Z^6+24*X*Y^15*Z^3+160*X^2*Y^12*Z^3+192*X^2*Y^9*Z^6+112*X^4*Y^6*Z^6+240*X*Y^12*Z^3+176*X^2*Y^9*Z^3+168*X^2*Y^6*Z^6+264*X*Y^9*Z^3+144*X^2*Y^6*Z^3+216*X*Y^6*Z^3+272*X^2*Y^3*Z^3+408*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨6×24×30:2560⟩ is the (Kronecker) tensor product of ⟨2×8×5:64⟩ with ⟨3×3×6:40⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table