Description of fast matrix multiplication algorithm: ⟨6×24×30:2520⟩

Algorithm type

16X4Y15Z6+24X2Y15Z6+64X4Y12Z6+112X2Y15Z3+96X2Y12Z6+16X4Y9Z6+168XY15Z3+96X2Y12Z3+24X2Y9Z6+176X4Y6Z6+144XY12Z3+128X2Y9Z3+264X2Y6Z6+192XY9Z3+128X2Y6Z3+192XY6Z3+272X2Y3Z3+408XY3Z316X4Y15Z624X2Y15Z664X4Y12Z6112X2Y15Z396X2Y12Z616X4Y9Z6168XY15Z396X2Y12Z324X2Y9Z6176X4Y6Z6144XY12Z3128X2Y9Z3264X2Y6Z6192XY9Z3128X2Y6Z3192XY6Z3272X2Y3Z3408XY3Z316*X^4*Y^15*Z^6+24*X^2*Y^15*Z^6+64*X^4*Y^12*Z^6+112*X^2*Y^15*Z^3+96*X^2*Y^12*Z^6+16*X^4*Y^9*Z^6+168*X*Y^15*Z^3+96*X^2*Y^12*Z^3+24*X^2*Y^9*Z^6+176*X^4*Y^6*Z^6+144*X*Y^12*Z^3+128*X^2*Y^9*Z^3+264*X^2*Y^6*Z^6+192*X*Y^9*Z^3+128*X^2*Y^6*Z^3+192*X*Y^6*Z^3+272*X^2*Y^3*Z^3+408*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨6×24×30:2520⟩ is the (Kronecker) tensor product of ⟨2×8×5:63⟩ with ⟨3×3×6:40⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table