Description of fast matrix multiplication algorithm: ⟨6×24×28:2430⟩

Algorithm type

18X4Y8Z4+18X4Y6Z4+162X4Y4Z4+90X2Y8Z2+18X4Y4Z2+126X2Y6Z2+72XY8Z+18X4Y3Z2+162X4Y2Z2+198X2Y4Z2+108XY6Z+72X2Y4Z+108X2Y3Z+396X2Y2Z2+36XY4Z+36X2Y2Z+396X2YZ+396XY2Z18X4Y8Z418X4Y6Z4162X4Y4Z490X2Y8Z218X4Y4Z2126X2Y6Z272XY8Z18X4Y3Z2162X4Y2Z2198X2Y4Z2108XY6Z72X2Y4Z108X2Y3Z396X2Y2Z236XY4Z36X2Y2Z396X2YZ396XY2Z18*X^4*Y^8*Z^4+18*X^4*Y^6*Z^4+162*X^4*Y^4*Z^4+90*X^2*Y^8*Z^2+18*X^4*Y^4*Z^2+126*X^2*Y^6*Z^2+72*X*Y^8*Z+18*X^4*Y^3*Z^2+162*X^4*Y^2*Z^2+198*X^2*Y^4*Z^2+108*X*Y^6*Z+72*X^2*Y^4*Z+108*X^2*Y^3*Z+396*X^2*Y^2*Z^2+36*X*Y^4*Z+36*X^2*Y^2*Z+396*X^2*Y*Z+396*X*Y^2*Z

Algorithm definition

The algorithm ⟨6×24×28:2430⟩ is the (Kronecker) tensor product of ⟨2×4×7:45⟩ with ⟨3×6×4:54⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table