Description of fast matrix multiplication algorithm: ⟨6×24×25:2176⟩

Algorithm type

16X4Y12Z4+16X2Y16Z2+16XY16Z+24X6Y8Z2+144X4Y8Z4+56X2Y12Z2+16X6Y4Z4+16X4Y4Z6+32X2Y8Z4+40XY12Z+32X6Y4Z2+24X3Y8Z+208X2Y8Z2+48X2Y4Z6+32XY8Z2+64X2Y4Z4+64XY8Z+16X3Y4Z2+16X2Y4Z3+32X3Y4Z+32X2Y4Z2+48XY4Z3+32X2Y3Z2+64XY4Z2+48X3Y2Z+32X3YZ2+288X2Y2Z2+32X2YZ3+64XY4Z+64X3YZ+80XY3Z+64XY2Z2+96XYZ3+128XY2Z+128XYZ2+64XYZ16X4Y12Z416X2Y16Z216XY16Z24X6Y8Z2144X4Y8Z456X2Y12Z216X6Y4Z416X4Y4Z632X2Y8Z440XY12Z32X6Y4Z224X3Y8Z208X2Y8Z248X2Y4Z632XY8Z264X2Y4Z464XY8Z16X3Y4Z216X2Y4Z332X3Y4Z32X2Y4Z248XY4Z332X2Y3Z264XY4Z248X3Y2Z32X3YZ2288X2Y2Z232X2YZ364XY4Z64X3YZ80XY3Z64XY2Z296XYZ3128XY2Z128XYZ264XYZ16*X^4*Y^12*Z^4+16*X^2*Y^16*Z^2+16*X*Y^16*Z+24*X^6*Y^8*Z^2+144*X^4*Y^8*Z^4+56*X^2*Y^12*Z^2+16*X^6*Y^4*Z^4+16*X^4*Y^4*Z^6+32*X^2*Y^8*Z^4+40*X*Y^12*Z+32*X^6*Y^4*Z^2+24*X^3*Y^8*Z+208*X^2*Y^8*Z^2+48*X^2*Y^4*Z^6+32*X*Y^8*Z^2+64*X^2*Y^4*Z^4+64*X*Y^8*Z+16*X^3*Y^4*Z^2+16*X^2*Y^4*Z^3+32*X^3*Y^4*Z+32*X^2*Y^4*Z^2+48*X*Y^4*Z^3+32*X^2*Y^3*Z^2+64*X*Y^4*Z^2+48*X^3*Y^2*Z+32*X^3*Y*Z^2+288*X^2*Y^2*Z^2+32*X^2*Y*Z^3+64*X*Y^4*Z+64*X^3*Y*Z+80*X*Y^3*Z+64*X*Y^2*Z^2+96*X*Y*Z^3+128*X*Y^2*Z+128*X*Y*Z^2+64*X*Y*Z

Algorithm definition

The algorithm ⟨6×24×25:2176⟩ is the (Kronecker) tensor product of ⟨2×4×5:32⟩ with ⟨3×6×5:68⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table