Description of fast matrix multiplication algorithm: ⟨6×21×30:2240⟩

Algorithm type

64X4Y9Z6+80X2Y12Z3+96X2Y9Z6+160X4Y6Z6+120XY12Z3+176X2Y9Z3+240X2Y6Z6+264XY9Z3+112X2Y6Z3+168XY6Z3+304X2Y3Z3+456XY3Z364X4Y9Z680X2Y12Z396X2Y9Z6160X4Y6Z6120XY12Z3176X2Y9Z3240X2Y6Z6264XY9Z3112X2Y6Z3168XY6Z3304X2Y3Z3456XY3Z364*X^4*Y^9*Z^6+80*X^2*Y^12*Z^3+96*X^2*Y^9*Z^6+160*X^4*Y^6*Z^6+120*X*Y^12*Z^3+176*X^2*Y^9*Z^3+240*X^2*Y^6*Z^6+264*X*Y^9*Z^3+112*X^2*Y^6*Z^3+168*X*Y^6*Z^3+304*X^2*Y^3*Z^3+456*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨6×21×30:2240⟩ is the (Kronecker) tensor product of ⟨2×7×5:56⟩ with ⟨3×3×6:40⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table