Description of fast matrix multiplication algorithm: ⟨6×21×24:1800⟩

Algorithm type

16X4Y12Z6+24X2Y12Z6+16X4Y9Z6+64X2Y12Z3+24X2Y9Z6+144X4Y6Z6+96XY12Z3+96X2Y9Z3+216X2Y6Z6+144XY9Z3+32X2Y6Z3+48XY6Z3+352X2Y3Z3+528XY3Z316X4Y12Z624X2Y12Z616X4Y9Z664X2Y12Z324X2Y9Z6144X4Y6Z696XY12Z396X2Y9Z3216X2Y6Z6144XY9Z332X2Y6Z348XY6Z3352X2Y3Z3528XY3Z316*X^4*Y^12*Z^6+24*X^2*Y^12*Z^6+16*X^4*Y^9*Z^6+64*X^2*Y^12*Z^3+24*X^2*Y^9*Z^6+144*X^4*Y^6*Z^6+96*X*Y^12*Z^3+96*X^2*Y^9*Z^3+216*X^2*Y^6*Z^6+144*X*Y^9*Z^3+32*X^2*Y^6*Z^3+48*X*Y^6*Z^3+352*X^2*Y^3*Z^3+528*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨6×21×24:1800⟩ is the (Kronecker) tensor product of ⟨2×7×4:45⟩ with ⟨3×3×6:40⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table