Description of fast matrix multiplication algorithm: ⟨6×20×32:2336⟩

Algorithm type

16X4Y16Z4+16X2Y16Z6+32X4Y12Z4+40X2Y16Z2+16XY16Z3+56X4Y8Z6+32X2Y12Z4+24XY16Z+80X4Y8Z4+32X2Y12Z2+40X2Y8Z6+32XY12Z2+8X4Y8Z2+56X2Y8Z3+96X2Y8Z2+112X2Y4Z6+40XY8Z3+8X2Y8Z+56X2Y4Z4+16XY8Z+128X2Y4Z2+144XY4Z3+64X2Y3Z2+112X2Y2Z3+56XY4Z2+160X2Y2Z2+144XY4Z+64XY3Z2+80XY2Z3+16X2Y2Z+224XYZ3+32XY2Z+112XYZ2+192XYZ16X4Y16Z416X2Y16Z632X4Y12Z440X2Y16Z216XY16Z356X4Y8Z632X2Y12Z424XY16Z80X4Y8Z432X2Y12Z240X2Y8Z632XY12Z28X4Y8Z256X2Y8Z396X2Y8Z2112X2Y4Z640XY8Z38X2Y8Z56X2Y4Z416XY8Z128X2Y4Z2144XY4Z364X2Y3Z2112X2Y2Z356XY4Z2160X2Y2Z2144XY4Z64XY3Z280XY2Z316X2Y2Z224XYZ332XY2Z112XYZ2192XYZ16*X^4*Y^16*Z^4+16*X^2*Y^16*Z^6+32*X^4*Y^12*Z^4+40*X^2*Y^16*Z^2+16*X*Y^16*Z^3+56*X^4*Y^8*Z^6+32*X^2*Y^12*Z^4+24*X*Y^16*Z+80*X^4*Y^8*Z^4+32*X^2*Y^12*Z^2+40*X^2*Y^8*Z^6+32*X*Y^12*Z^2+8*X^4*Y^8*Z^2+56*X^2*Y^8*Z^3+96*X^2*Y^8*Z^2+112*X^2*Y^4*Z^6+40*X*Y^8*Z^3+8*X^2*Y^8*Z+56*X^2*Y^4*Z^4+16*X*Y^8*Z+128*X^2*Y^4*Z^2+144*X*Y^4*Z^3+64*X^2*Y^3*Z^2+112*X^2*Y^2*Z^3+56*X*Y^4*Z^2+160*X^2*Y^2*Z^2+144*X*Y^4*Z+64*X*Y^3*Z^2+80*X*Y^2*Z^3+16*X^2*Y^2*Z+224*X*Y*Z^3+32*X*Y^2*Z+112*X*Y*Z^2+192*X*Y*Z

Algorithm definition

The algorithm ⟨6×20×32:2336⟩ is the (Kronecker) tensor product of ⟨2×5×4:32⟩ with ⟨3×4×8:73⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table