Description of fast matrix multiplication algorithm: ⟨6×20×28:2128⟩

Algorithm type

40X4Y6Z4+10XY12Z+8X2Y9Z2+8X4Y6Z2+100X4Y4Z4+50X2Y8Z2+8X2Y6Z4+12X6Y3Z2+10X2Y8Z+12X2Y3Z6+22XY9Z+10XY8Z2+30X6Y2Z2+20X4Y4Z2+174X2Y6Z2+20X2Y4Z4+30X2Y2Z6+55XY8Z+4X4Y3Z2+22X2Y6Z+4X2Y3Z4+22XY6Z2+10X4Y2Z2+15X3Y4Z+180X2Y4Z2+10X2Y2Z4+135XY6Z+15XY4Z3+33X3Y3Z+19X2Y4Z+12X2Y3Z2+19XY4Z2+33XY3Z3+21X3Y2Z+11X2Y3Z+220X2Y2Z2+92XY4Z+11XY3Z2+21XY2Z3+57X3YZ+45X2Y2Z+71XY3Z+45XY2Z2+57XYZ3+19X2YZ+230XY2Z+19XYZ2+57XYZ40X4Y6Z410XY12Z8X2Y9Z28X4Y6Z2100X4Y4Z450X2Y8Z28X2Y6Z412X6Y3Z210X2Y8Z12X2Y3Z622XY9Z10XY8Z230X6Y2Z220X4Y4Z2174X2Y6Z220X2Y4Z430X2Y2Z655XY8Z4X4Y3Z222X2Y6Z4X2Y3Z422XY6Z210X4Y2Z215X3Y4Z180X2Y4Z210X2Y2Z4135XY6Z15XY4Z333X3Y3Z19X2Y4Z12X2Y3Z219XY4Z233XY3Z321X3Y2Z11X2Y3Z220X2Y2Z292XY4Z11XY3Z221XY2Z357X3YZ45X2Y2Z71XY3Z45XY2Z257XYZ319X2YZ230XY2Z19XYZ257XYZ40*X^4*Y^6*Z^4+10*X*Y^12*Z+8*X^2*Y^9*Z^2+8*X^4*Y^6*Z^2+100*X^4*Y^4*Z^4+50*X^2*Y^8*Z^2+8*X^2*Y^6*Z^4+12*X^6*Y^3*Z^2+10*X^2*Y^8*Z+12*X^2*Y^3*Z^6+22*X*Y^9*Z+10*X*Y^8*Z^2+30*X^6*Y^2*Z^2+20*X^4*Y^4*Z^2+174*X^2*Y^6*Z^2+20*X^2*Y^4*Z^4+30*X^2*Y^2*Z^6+55*X*Y^8*Z+4*X^4*Y^3*Z^2+22*X^2*Y^6*Z+4*X^2*Y^3*Z^4+22*X*Y^6*Z^2+10*X^4*Y^2*Z^2+15*X^3*Y^4*Z+180*X^2*Y^4*Z^2+10*X^2*Y^2*Z^4+135*X*Y^6*Z+15*X*Y^4*Z^3+33*X^3*Y^3*Z+19*X^2*Y^4*Z+12*X^2*Y^3*Z^2+19*X*Y^4*Z^2+33*X*Y^3*Z^3+21*X^3*Y^2*Z+11*X^2*Y^3*Z+220*X^2*Y^2*Z^2+92*X*Y^4*Z+11*X*Y^3*Z^2+21*X*Y^2*Z^3+57*X^3*Y*Z+45*X^2*Y^2*Z+71*X*Y^3*Z+45*X*Y^2*Z^2+57*X*Y*Z^3+19*X^2*Y*Z+230*X*Y^2*Z+19*X*Y*Z^2+57*X*Y*Z

Algorithm definition

The algorithm ⟨6×20×28:2128⟩ is the (Kronecker) tensor product of ⟨2×5×7:56⟩ with ⟨3×4×4:38⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table