Description of fast matrix multiplication algorithm: ⟨6×20×28:2016⟩

Algorithm type

48X4Y12Z4+16X2Y16Z2+16XY16Z+120X4Y8Z4+144X2Y12Z2+96XY12Z+48X4Y4Z4+216X2Y8Z2+96XY8Z+128X2Y4Z2+96X2Y3Z2+240X2Y2Z2+112XY4Z+96X2YZ2+192XY3Z+192XY2Z+160XYZ48X4Y12Z416X2Y16Z216XY16Z120X4Y8Z4144X2Y12Z296XY12Z48X4Y4Z4216X2Y8Z296XY8Z128X2Y4Z296X2Y3Z2240X2Y2Z2112XY4Z96X2YZ2192XY3Z192XY2Z160XYZ48*X^4*Y^12*Z^4+16*X^2*Y^16*Z^2+16*X*Y^16*Z+120*X^4*Y^8*Z^4+144*X^2*Y^12*Z^2+96*X*Y^12*Z+48*X^4*Y^4*Z^4+216*X^2*Y^8*Z^2+96*X*Y^8*Z+128*X^2*Y^4*Z^2+96*X^2*Y^3*Z^2+240*X^2*Y^2*Z^2+112*X*Y^4*Z+96*X^2*Y*Z^2+192*X*Y^3*Z+192*X*Y^2*Z+160*X*Y*Z

Algorithm definition

The algorithm ⟨6×20×28:2016⟩ is the (Kronecker) tensor product of ⟨2×5×4:32⟩ with ⟨3×4×7:63⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table