Description of fast matrix multiplication algorithm: ⟨6×20×25:1880⟩

Algorithm type

130X4Y4Z4+8XY9Z+30X6Y2Z2+10X4Y4Z2+72X2Y6Z2+20X2Y4Z4+40X2Y2Z6+4X2Y6Z+8XY6Z2+30X4Y2Z2+210X2Y4Z2+60X2Y2Z4+52XY6Z+12X3Y3Z+10X2Y4Z+20XY4Z2+16XY3Z3+30X3Y2Z+12X2Y3Z+258X2Y2Z2+80XY4Z+24XY3Z2+40XY2Z3+48X3YZ+46X2Y2Z+52XY3Z+92XY2Z2+64XYZ3+48X2YZ+178XY2Z+96XYZ2+80XYZ130X4Y4Z48XY9Z30X6Y2Z210X4Y4Z272X2Y6Z220X2Y4Z440X2Y2Z64X2Y6Z8XY6Z230X4Y2Z2210X2Y4Z260X2Y2Z452XY6Z12X3Y3Z10X2Y4Z20XY4Z216XY3Z330X3Y2Z12X2Y3Z258X2Y2Z280XY4Z24XY3Z240XY2Z348X3YZ46X2Y2Z52XY3Z92XY2Z264XYZ348X2YZ178XY2Z96XYZ280XYZ130*X^4*Y^4*Z^4+8*X*Y^9*Z+30*X^6*Y^2*Z^2+10*X^4*Y^4*Z^2+72*X^2*Y^6*Z^2+20*X^2*Y^4*Z^4+40*X^2*Y^2*Z^6+4*X^2*Y^6*Z+8*X*Y^6*Z^2+30*X^4*Y^2*Z^2+210*X^2*Y^4*Z^2+60*X^2*Y^2*Z^4+52*X*Y^6*Z+12*X^3*Y^3*Z+10*X^2*Y^4*Z+20*X*Y^4*Z^2+16*X*Y^3*Z^3+30*X^3*Y^2*Z+12*X^2*Y^3*Z+258*X^2*Y^2*Z^2+80*X*Y^4*Z+24*X*Y^3*Z^2+40*X*Y^2*Z^3+48*X^3*Y*Z+46*X^2*Y^2*Z+52*X*Y^3*Z+92*X*Y^2*Z^2+64*X*Y*Z^3+48*X^2*Y*Z+178*X*Y^2*Z+96*X*Y*Z^2+80*X*Y*Z

Algorithm definition

The algorithm ⟨6×20×25:1880⟩ is the (Kronecker) tensor product of ⟨2×5×5:40⟩ with ⟨3×4×5:47⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table