Description of fast matrix multiplication algorithm: ⟨6×20×21:1575⟩

Algorithm type

30X4Y6Z4+4XY12Z+12X2Y9Z2+75X4Y4Z4+10X2Y8Z2+24XY9Z+30X4Y2Z4+126X2Y6Z2+12XY8Z+150X2Y4Z2+96XY6Z+84X2Y3Z2+266X2Y2Z2+96XY4Z+72X2YZ2+164XY3Z+204XY2Z+120XYZ30X4Y6Z44XY12Z12X2Y9Z275X4Y4Z410X2Y8Z224XY9Z30X4Y2Z4126X2Y6Z212XY8Z150X2Y4Z296XY6Z84X2Y3Z2266X2Y2Z296XY4Z72X2YZ2164XY3Z204XY2Z120XYZ30*X^4*Y^6*Z^4+4*X*Y^12*Z+12*X^2*Y^9*Z^2+75*X^4*Y^4*Z^4+10*X^2*Y^8*Z^2+24*X*Y^9*Z+30*X^4*Y^2*Z^4+126*X^2*Y^6*Z^2+12*X*Y^8*Z+150*X^2*Y^4*Z^2+96*X*Y^6*Z+84*X^2*Y^3*Z^2+266*X^2*Y^2*Z^2+96*X*Y^4*Z+72*X^2*Y*Z^2+164*X*Y^3*Z+204*X*Y^2*Z+120*X*Y*Z

Algorithm definition

The algorithm ⟨6×20×21:1575⟩ is the (Kronecker) tensor product of ⟨2×5×3:25⟩ with ⟨3×4×7:63⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table