Description of fast matrix multiplication algorithm: ⟨6×20×20:1508⟩

Algorithm type

4XY12Z+6X6Y4Z2+102X4Y4Z4+12X2Y8Z2+6X2Y4Z6+2XY9Z+30X6Y2Z2+12X4Y4Z2+2X3Y6Z+40X2Y6Z2+12X2Y4Z4+30X2Y2Z6+16XY8Z+2XY6Z3+4X2Y6Z+4XY6Z2+6X4Y2Z2+8X3Y4Z+214X2Y4Z2+6X2Y2Z4+34XY6Z+8XY4Z3+10X3Y3Z+16X2Y4Z+16XY4Z2+10XY3Z3+50X3Y2Z+2X2Y3Z+212X2Y2Z2+124XY4Z+2XY3Z2+50XY2Z3+50X3YZ+28X2Y2Z+24XY3Z+28XY2Z2+50XYZ3+10X2YZ+186XY2Z+10XYZ2+70XYZ4XY12Z6X6Y4Z2102X4Y4Z412X2Y8Z26X2Y4Z62XY9Z30X6Y2Z212X4Y4Z22X3Y6Z40X2Y6Z212X2Y4Z430X2Y2Z616XY8Z2XY6Z34X2Y6Z4XY6Z26X4Y2Z28X3Y4Z214X2Y4Z26X2Y2Z434XY6Z8XY4Z310X3Y3Z16X2Y4Z16XY4Z210XY3Z350X3Y2Z2X2Y3Z212X2Y2Z2124XY4Z2XY3Z250XY2Z350X3YZ28X2Y2Z24XY3Z28XY2Z250XYZ310X2YZ186XY2Z10XYZ270XYZ4*X*Y^12*Z+6*X^6*Y^4*Z^2+102*X^4*Y^4*Z^4+12*X^2*Y^8*Z^2+6*X^2*Y^4*Z^6+2*X*Y^9*Z+30*X^6*Y^2*Z^2+12*X^4*Y^4*Z^2+2*X^3*Y^6*Z+40*X^2*Y^6*Z^2+12*X^2*Y^4*Z^4+30*X^2*Y^2*Z^6+16*X*Y^8*Z+2*X*Y^6*Z^3+4*X^2*Y^6*Z+4*X*Y^6*Z^2+6*X^4*Y^2*Z^2+8*X^3*Y^4*Z+214*X^2*Y^4*Z^2+6*X^2*Y^2*Z^4+34*X*Y^6*Z+8*X*Y^4*Z^3+10*X^3*Y^3*Z+16*X^2*Y^4*Z+16*X*Y^4*Z^2+10*X*Y^3*Z^3+50*X^3*Y^2*Z+2*X^2*Y^3*Z+212*X^2*Y^2*Z^2+124*X*Y^4*Z+2*X*Y^3*Z^2+50*X*Y^2*Z^3+50*X^3*Y*Z+28*X^2*Y^2*Z+24*X*Y^3*Z+28*X*Y^2*Z^2+50*X*Y*Z^3+10*X^2*Y*Z+186*X*Y^2*Z+10*X*Y*Z^2+70*X*Y*Z

Algorithm definition

The algorithm ⟨6×20×20:1508⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨3×5×5:58⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table