Description of fast matrix multiplication algorithm: ⟨6×18×30:1920⟩

Algorithm type

16X4Y12Z6+16X2Y15Z3+24X2Y12Z6+80X4Y9Z6+24XY15Z3+96X2Y12Z3+120X2Y9Z6+96X4Y6Z6+144XY12Z3+128X2Y9Z3+144X2Y6Z6+192XY9Z3+128X2Y6Z3+192XY6Z3+208X2Y3Z3+312XY3Z316X4Y12Z616X2Y15Z324X2Y12Z680X4Y9Z624XY15Z396X2Y12Z3120X2Y9Z696X4Y6Z6144XY12Z3128X2Y9Z3144X2Y6Z6192XY9Z3128X2Y6Z3192XY6Z3208X2Y3Z3312XY3Z316*X^4*Y^12*Z^6+16*X^2*Y^15*Z^3+24*X^2*Y^12*Z^6+80*X^4*Y^9*Z^6+24*X*Y^15*Z^3+96*X^2*Y^12*Z^3+120*X^2*Y^9*Z^6+96*X^4*Y^6*Z^6+144*X*Y^12*Z^3+128*X^2*Y^9*Z^3+144*X^2*Y^6*Z^6+192*X*Y^9*Z^3+128*X^2*Y^6*Z^3+192*X*Y^6*Z^3+208*X^2*Y^3*Z^3+312*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨6×18×30:1920⟩ is the (Kronecker) tensor product of ⟨2×6×5:48⟩ with ⟨3×3×6:40⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table