Description of fast matrix multiplication algorithm: ⟨6×18×24:1560⟩

Algorithm type

16X4Y12Z6+24X2Y12Z6+64X4Y9Z6+64X2Y12Z3+96X2Y9Z6+64X4Y6Z6+96XY12Z3+128X2Y9Z3+96X2Y6Z6+192XY9Z3+96X2Y6Z3+144XY6Z3+192X2Y3Z3+288XY3Z316X4Y12Z624X2Y12Z664X4Y9Z664X2Y12Z396X2Y9Z664X4Y6Z696XY12Z3128X2Y9Z396X2Y6Z6192XY9Z396X2Y6Z3144XY6Z3192X2Y3Z3288XY3Z316*X^4*Y^12*Z^6+24*X^2*Y^12*Z^6+64*X^4*Y^9*Z^6+64*X^2*Y^12*Z^3+96*X^2*Y^9*Z^6+64*X^4*Y^6*Z^6+96*X*Y^12*Z^3+128*X^2*Y^9*Z^3+96*X^2*Y^6*Z^6+192*X*Y^9*Z^3+96*X^2*Y^6*Z^3+144*X*Y^6*Z^3+192*X^2*Y^3*Z^3+288*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨6×18×24:1560⟩ is the (Kronecker) tensor product of ⟨2×6×4:39⟩ with ⟨3×3×6:40⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table