Description of fast matrix multiplication algorithm: ⟨6×16×28:1638⟩

Algorithm type

36X4Y6Z4+4XY12Z+12X2Y9Z2+90X4Y4Z4+12X2Y8Z2+24XY9Z+36X4Y2Z4+150X2Y6Z2+16XY8Z+192X2Y4Z2+120XY6Z+72X2Y3Z2+258X2Y2Z2+116XY4Z+60X2YZ2+140XY3Z+200XY2Z+100XYZ36X4Y6Z44XY12Z12X2Y9Z290X4Y4Z412X2Y8Z224XY9Z36X4Y2Z4150X2Y6Z216XY8Z192X2Y4Z2120XY6Z72X2Y3Z2258X2Y2Z2116XY4Z60X2YZ2140XY3Z200XY2Z100XYZ36*X^4*Y^6*Z^4+4*X*Y^12*Z+12*X^2*Y^9*Z^2+90*X^4*Y^4*Z^4+12*X^2*Y^8*Z^2+24*X*Y^9*Z+36*X^4*Y^2*Z^4+150*X^2*Y^6*Z^2+16*X*Y^8*Z+192*X^2*Y^4*Z^2+120*X*Y^6*Z+72*X^2*Y^3*Z^2+258*X^2*Y^2*Z^2+116*X*Y^4*Z+60*X^2*Y*Z^2+140*X*Y^3*Z+200*X*Y^2*Z+100*X*Y*Z

Algorithm definition

The algorithm ⟨6×16×28:1638⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨3×4×7:63⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table