Description of fast matrix multiplication algorithm: ⟨6×16×21:1260⟩

Algorithm type

24X4Y6Z4+8XY12Z+24X2Y9Z2+60X4Y4Z4+8X2Y8Z2+48XY9Z+24X4Y2Z4+108X2Y6Z2+48X2Y4Z2+48XY6Z+96X2Y3Z2+220X2Y2Z2+24XY4Z+72X2YZ2+184XY3Z+144XY2Z+120XYZ24X4Y6Z48XY12Z24X2Y9Z260X4Y4Z48X2Y8Z248XY9Z24X4Y2Z4108X2Y6Z248X2Y4Z248XY6Z96X2Y3Z2220X2Y2Z224XY4Z72X2YZ2184XY3Z144XY2Z120XYZ24*X^4*Y^6*Z^4+8*X*Y^12*Z+24*X^2*Y^9*Z^2+60*X^4*Y^4*Z^4+8*X^2*Y^8*Z^2+48*X*Y^9*Z+24*X^4*Y^2*Z^4+108*X^2*Y^6*Z^2+48*X^2*Y^4*Z^2+48*X*Y^6*Z+96*X^2*Y^3*Z^2+220*X^2*Y^2*Z^2+24*X*Y^4*Z+72*X^2*Y*Z^2+184*X*Y^3*Z+144*X*Y^2*Z+120*X*Y*Z

Algorithm definition

The algorithm ⟨6×16×21:1260⟩ is the (Kronecker) tensor product of ⟨2×4×3:20⟩ with ⟨3×4×7:63⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table