Description of fast matrix multiplication algorithm: ⟨6×16×20:1216⟩

Algorithm type

80X4Y8Z4+16X2Y12Z2+16X4Y8Z2+16X2Y8Z4+16XY12Z+24X6Y4Z2+168X2Y8Z2+24X2Y4Z6+16X2Y8Z+16XY8Z2+8X4Y4Z2+8X2Y4Z4+88XY8Z+24X3Y4Z+24X2Y4Z2+24XY4Z3+8X2Y4Z+8XY4Z2+160X2Y2Z2+24XY4Z+48X3YZ+32X2Y2Z+32XY3Z+32XY2Z2+48XYZ3+16X2YZ+176XY2Z+16XYZ2+48XYZ80X4Y8Z416X2Y12Z216X4Y8Z216X2Y8Z416XY12Z24X6Y4Z2168X2Y8Z224X2Y4Z616X2Y8Z16XY8Z28X4Y4Z28X2Y4Z488XY8Z24X3Y4Z24X2Y4Z224XY4Z38X2Y4Z8XY4Z2160X2Y2Z224XY4Z48X3YZ32X2Y2Z32XY3Z32XY2Z248XYZ316X2YZ176XY2Z16XYZ248XYZ80*X^4*Y^8*Z^4+16*X^2*Y^12*Z^2+16*X^4*Y^8*Z^2+16*X^2*Y^8*Z^4+16*X*Y^12*Z+24*X^6*Y^4*Z^2+168*X^2*Y^8*Z^2+24*X^2*Y^4*Z^6+16*X^2*Y^8*Z+16*X*Y^8*Z^2+8*X^4*Y^4*Z^2+8*X^2*Y^4*Z^4+88*X*Y^8*Z+24*X^3*Y^4*Z+24*X^2*Y^4*Z^2+24*X*Y^4*Z^3+8*X^2*Y^4*Z+8*X*Y^4*Z^2+160*X^2*Y^2*Z^2+24*X*Y^4*Z+48*X^3*Y*Z+32*X^2*Y^2*Z+32*X*Y^3*Z+32*X*Y^2*Z^2+48*X*Y*Z^3+16*X^2*Y*Z+176*X*Y^2*Z+16*X*Y*Z^2+48*X*Y*Z

Algorithm definition

The algorithm ⟨6×16×20:1216⟩ is the (Kronecker) tensor product of ⟨2×4×5:32⟩ with ⟨3×4×4:38⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table