Description of fast matrix multiplication algorithm: ⟨6×16×20:1222⟩

Algorithm type

78X4Y4Z4+4XY9Z+18X6Y2Z2+6X4Y4Z2+38X2Y6Z2+12X2Y4Z4+24X2Y2Z6+2X2Y6Z+4XY6Z2+18X4Y2Z2+152X2Y4Z2+36X2Y2Z4+32XY6Z+6X3Y3Z+8X2Y4Z+16XY4Z2+8XY3Z3+24X3Y2Z+6X2Y3Z+160X2Y2Z2+64XY4Z+12XY3Z2+32XY2Z3+30X3YZ+34X2Y2Z+30XY3Z+68XY2Z2+40XYZ3+30X2YZ+120XY2Z+60XYZ2+50XYZ78X4Y4Z44XY9Z18X6Y2Z26X4Y4Z238X2Y6Z212X2Y4Z424X2Y2Z62X2Y6Z4XY6Z218X4Y2Z2152X2Y4Z236X2Y2Z432XY6Z6X3Y3Z8X2Y4Z16XY4Z28XY3Z324X3Y2Z6X2Y3Z160X2Y2Z264XY4Z12XY3Z232XY2Z330X3YZ34X2Y2Z30XY3Z68XY2Z240XYZ330X2YZ120XY2Z60XYZ250XYZ78*X^4*Y^4*Z^4+4*X*Y^9*Z+18*X^6*Y^2*Z^2+6*X^4*Y^4*Z^2+38*X^2*Y^6*Z^2+12*X^2*Y^4*Z^4+24*X^2*Y^2*Z^6+2*X^2*Y^6*Z+4*X*Y^6*Z^2+18*X^4*Y^2*Z^2+152*X^2*Y^4*Z^2+36*X^2*Y^2*Z^4+32*X*Y^6*Z+6*X^3*Y^3*Z+8*X^2*Y^4*Z+16*X*Y^4*Z^2+8*X*Y^3*Z^3+24*X^3*Y^2*Z+6*X^2*Y^3*Z+160*X^2*Y^2*Z^2+64*X*Y^4*Z+12*X*Y^3*Z^2+32*X*Y^2*Z^3+30*X^3*Y*Z+34*X^2*Y^2*Z+30*X*Y^3*Z+68*X*Y^2*Z^2+40*X*Y*Z^3+30*X^2*Y*Z+120*X*Y^2*Z+60*X*Y*Z^2+50*X*Y*Z

Algorithm definition

The algorithm ⟨6×16×20:1222⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨3×4×5:47⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table