Description of fast matrix multiplication algorithm: ⟨6×16×16:988⟩

Algorithm type

60X4Y4Z4+4XY9Z+18X6Y2Z2+12X4Y4Z2+32X2Y6Z2+12X2Y4Z4+18X2Y2Z6+4X2Y6Z+4XY6Z2+6X4Y2Z2+146X2Y4Z2+6X2Y2Z4+38XY6Z+6X3Y3Z+16X2Y4Z+16XY4Z2+6XY3Z3+24X3Y2Z+2X2Y3Z+118X2Y2Z2+88XY4Z+2XY3Z2+24XY2Z3+30X3YZ+28X2Y2Z+26XY3Z+28XY2Z2+30XYZ3+10X2YZ+134XY2Z+10XYZ2+30XYZ60X4Y4Z44XY9Z18X6Y2Z212X4Y4Z232X2Y6Z212X2Y4Z418X2Y2Z64X2Y6Z4XY6Z26X4Y2Z2146X2Y4Z26X2Y2Z438XY6Z6X3Y3Z16X2Y4Z16XY4Z26XY3Z324X3Y2Z2X2Y3Z118X2Y2Z288XY4Z2XY3Z224XY2Z330X3YZ28X2Y2Z26XY3Z28XY2Z230XYZ310X2YZ134XY2Z10XYZ230XYZ60*X^4*Y^4*Z^4+4*X*Y^9*Z+18*X^6*Y^2*Z^2+12*X^4*Y^4*Z^2+32*X^2*Y^6*Z^2+12*X^2*Y^4*Z^4+18*X^2*Y^2*Z^6+4*X^2*Y^6*Z+4*X*Y^6*Z^2+6*X^4*Y^2*Z^2+146*X^2*Y^4*Z^2+6*X^2*Y^2*Z^4+38*X*Y^6*Z+6*X^3*Y^3*Z+16*X^2*Y^4*Z+16*X*Y^4*Z^2+6*X*Y^3*Z^3+24*X^3*Y^2*Z+2*X^2*Y^3*Z+118*X^2*Y^2*Z^2+88*X*Y^4*Z+2*X*Y^3*Z^2+24*X*Y^2*Z^3+30*X^3*Y*Z+28*X^2*Y^2*Z+26*X*Y^3*Z+28*X*Y^2*Z^2+30*X*Y*Z^3+10*X^2*Y*Z+134*X*Y^2*Z+10*X*Y*Z^2+30*X*Y*Z

Algorithm definition

The algorithm ⟨6×16×16:988⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨3×4×4:38⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table