Description of fast matrix multiplication algorithm: ⟨6×15×21:1185⟩

Algorithm type

6X4Y6Z4+72X4Y4Z4+6X2Y8Z2+6X6Y2Z2+24X2Y6Z2+18X2Y4Z4+21X2Y2Z6+12XY8Z+6X4Y2Z2+186X2Y4Z2+36X2Y2Z4+24XY6Z+12X2Y3Z2+36XY4Z2+12X3Y2Z+156X2Y2Z2+96XY4Z+42XY2Z3+12X3YZ+12X2Y2Z+24XY3Z+108XY2Z2+42XYZ3+12X2YZ+108XY2Z+72XYZ2+24XYZ6X4Y6Z472X4Y4Z46X2Y8Z26X6Y2Z224X2Y6Z218X2Y4Z421X2Y2Z612XY8Z6X4Y2Z2186X2Y4Z236X2Y2Z424XY6Z12X2Y3Z236XY4Z212X3Y2Z156X2Y2Z296XY4Z42XY2Z312X3YZ12X2Y2Z24XY3Z108XY2Z242XYZ312X2YZ108XY2Z72XYZ224XYZ6*X^4*Y^6*Z^4+72*X^4*Y^4*Z^4+6*X^2*Y^8*Z^2+6*X^6*Y^2*Z^2+24*X^2*Y^6*Z^2+18*X^2*Y^4*Z^4+21*X^2*Y^2*Z^6+12*X*Y^8*Z+6*X^4*Y^2*Z^2+186*X^2*Y^4*Z^2+36*X^2*Y^2*Z^4+24*X*Y^6*Z+12*X^2*Y^3*Z^2+36*X*Y^4*Z^2+12*X^3*Y^2*Z+156*X^2*Y^2*Z^2+96*X*Y^4*Z+42*X*Y^2*Z^3+12*X^3*Y*Z+12*X^2*Y^2*Z+24*X*Y^3*Z+108*X*Y^2*Z^2+42*X*Y*Z^3+12*X^2*Y*Z+108*X*Y^2*Z+72*X*Y*Z^2+24*X*Y*Z

Algorithm definition

The algorithm ⟨6×15×21:1185⟩ is the (Kronecker) tensor product of ⟨3×5×7:79⟩ with ⟨2×3×3:15⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table