Description of fast matrix multiplication algorithm: ⟨6×15×16:940⟩

Algorithm type

52X4Y4Z4+8XY9Z+16X6Y2Z2+8X4Y4Z2+60X2Y6Z2+4X2Y4Z4+12X2Y2Z6+8X2Y6Z+4XY6Z2+24X4Y2Z2+32X2Y4Z2+12X2Y2Z4+32XY6Z+16X3Y3Z+12XY3Z3+24X2Y3Z+176X2Y2Z2+12XY3Z2+48X3YZ+24X2Y2Z+44XY3Z+12XY2Z2+36XYZ3+72X2YZ+96XY2Z+36XYZ2+60XYZ52X4Y4Z48XY9Z16X6Y2Z28X4Y4Z260X2Y6Z24X2Y4Z412X2Y2Z68X2Y6Z4XY6Z224X4Y2Z232X2Y4Z212X2Y2Z432XY6Z16X3Y3Z12XY3Z324X2Y3Z176X2Y2Z212XY3Z248X3YZ24X2Y2Z44XY3Z12XY2Z236XYZ372X2YZ96XY2Z36XYZ260XYZ52*X^4*Y^4*Z^4+8*X*Y^9*Z+16*X^6*Y^2*Z^2+8*X^4*Y^4*Z^2+60*X^2*Y^6*Z^2+4*X^2*Y^4*Z^4+12*X^2*Y^2*Z^6+8*X^2*Y^6*Z+4*X*Y^6*Z^2+24*X^4*Y^2*Z^2+32*X^2*Y^4*Z^2+12*X^2*Y^2*Z^4+32*X*Y^6*Z+16*X^3*Y^3*Z+12*X*Y^3*Z^3+24*X^2*Y^3*Z+176*X^2*Y^2*Z^2+12*X*Y^3*Z^2+48*X^3*Y*Z+24*X^2*Y^2*Z+44*X*Y^3*Z+12*X*Y^2*Z^2+36*X*Y*Z^3+72*X^2*Y*Z+96*X*Y^2*Z+36*X*Y*Z^2+60*X*Y*Z

Algorithm definition

The algorithm ⟨6×15×16:940⟩ is the (Kronecker) tensor product of ⟨2×3×4:20⟩ with ⟨3×5×4:47⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table