Description of fast matrix multiplication algorithm: ⟨6×15×15:870⟩

Algorithm type

3X6Y4Z2+51X4Y4Z4+6X2Y8Z2+3X2Y4Z6+15X6Y2Z2+6X4Y4Z2+3X2Y6Z2+6X2Y4Z4+15X2Y2Z6+12XY8Z+3X4Y2Z2+6X3Y4Z+141X2Y4Z2+3X2Y2Z4+6XY6Z+6XY4Z3+12X2Y4Z+12XY4Z2+36X3Y2Z+123X2Y2Z2+90XY4Z+36XY2Z3+30X3YZ+18X2Y2Z+6XY3Z+18XY2Z2+30XYZ3+6X2YZ+120XY2Z+6XYZ2+42XYZ3X6Y4Z251X4Y4Z46X2Y8Z23X2Y4Z615X6Y2Z26X4Y4Z23X2Y6Z26X2Y4Z415X2Y2Z612XY8Z3X4Y2Z26X3Y4Z141X2Y4Z23X2Y2Z46XY6Z6XY4Z312X2Y4Z12XY4Z236X3Y2Z123X2Y2Z290XY4Z36XY2Z330X3YZ18X2Y2Z6XY3Z18XY2Z230XYZ36X2YZ120XY2Z6XYZ242XYZ3*X^6*Y^4*Z^2+51*X^4*Y^4*Z^4+6*X^2*Y^8*Z^2+3*X^2*Y^4*Z^6+15*X^6*Y^2*Z^2+6*X^4*Y^4*Z^2+3*X^2*Y^6*Z^2+6*X^2*Y^4*Z^4+15*X^2*Y^2*Z^6+12*X*Y^8*Z+3*X^4*Y^2*Z^2+6*X^3*Y^4*Z+141*X^2*Y^4*Z^2+3*X^2*Y^2*Z^4+6*X*Y^6*Z+6*X*Y^4*Z^3+12*X^2*Y^4*Z+12*X*Y^4*Z^2+36*X^3*Y^2*Z+123*X^2*Y^2*Z^2+90*X*Y^4*Z+36*X*Y^2*Z^3+30*X^3*Y*Z+18*X^2*Y^2*Z+6*X*Y^3*Z+18*X*Y^2*Z^2+30*X*Y*Z^3+6*X^2*Y*Z+120*X*Y^2*Z+6*X*Y*Z^2+42*X*Y*Z

Algorithm definition

The algorithm ⟨6×15×15:870⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨3×5×5:58⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table