Description of fast matrix multiplication algorithm: ⟨6×14×15:825⟩

Algorithm type

6X4Y10Z4+6X4Y8Z4+3X4Y6Z4+18X2Y10Z2+30X4Y4Z4+21X2Y8Z2+12X2Y5Z4+3X4Y2Z4+12X2Y6Z2+12X2Y4Z4+12X2Y5Z2+6X2Y3Z4+6X4Y2Z2+30X2Y4Z2+60X2Y2Z4+36XY5Z2+6X2Y3Z2+6X2YZ4+36XY5Z+42XY4Z2+102X2Y2Z2+42XY4Z+24XY3Z2+18X2YZ2+24XY3Z+36XY2Z2+12X2YZ+36XY2Z+84XYZ2+84XYZ6X4Y10Z46X4Y8Z43X4Y6Z418X2Y10Z230X4Y4Z421X2Y8Z212X2Y5Z43X4Y2Z412X2Y6Z212X2Y4Z412X2Y5Z26X2Y3Z46X4Y2Z230X2Y4Z260X2Y2Z436XY5Z26X2Y3Z26X2YZ436XY5Z42XY4Z2102X2Y2Z242XY4Z24XY3Z218X2YZ224XY3Z36XY2Z212X2YZ36XY2Z84XYZ284XYZ6*X^4*Y^10*Z^4+6*X^4*Y^8*Z^4+3*X^4*Y^6*Z^4+18*X^2*Y^10*Z^2+30*X^4*Y^4*Z^4+21*X^2*Y^8*Z^2+12*X^2*Y^5*Z^4+3*X^4*Y^2*Z^4+12*X^2*Y^6*Z^2+12*X^2*Y^4*Z^4+12*X^2*Y^5*Z^2+6*X^2*Y^3*Z^4+6*X^4*Y^2*Z^2+30*X^2*Y^4*Z^2+60*X^2*Y^2*Z^4+36*X*Y^5*Z^2+6*X^2*Y^3*Z^2+6*X^2*Y*Z^4+36*X*Y^5*Z+42*X*Y^4*Z^2+102*X^2*Y^2*Z^2+42*X*Y^4*Z+24*X*Y^3*Z^2+18*X^2*Y*Z^2+24*X*Y^3*Z+36*X*Y^2*Z^2+12*X^2*Y*Z+36*X*Y^2*Z+84*X*Y*Z^2+84*X*Y*Z

Algorithm definition

The algorithm ⟨6×14×15:825⟩ is the (Kronecker) tensor product of ⟨2×7×5:55⟩ with ⟨3×2×3:15⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table