Description of fast matrix multiplication algorithm: ⟨6×12×32:1430⟩

Algorithm type

96X4Y6Z6+32X2Y9Z3+144X2Y6Z6+48XY9Z3+18X4Y4Z4+128X2Y6Z3+6X2Y6Z2+192XY6Z3+36X4Y2Z2+24X2Y4Z2+160X2Y3Z3+240XY3Z3+12X2Y3Z+66X2Y2Z2+48X2Y2Z+12XY3Z+60X2YZ+48XY2Z+60XYZ96X4Y6Z632X2Y9Z3144X2Y6Z648XY9Z318X4Y4Z4128X2Y6Z36X2Y6Z2192XY6Z336X4Y2Z224X2Y4Z2160X2Y3Z3240XY3Z312X2Y3Z66X2Y2Z248X2Y2Z12XY3Z60X2YZ48XY2Z60XYZ96*X^4*Y^6*Z^6+32*X^2*Y^9*Z^3+144*X^2*Y^6*Z^6+48*X*Y^9*Z^3+18*X^4*Y^4*Z^4+128*X^2*Y^6*Z^3+6*X^2*Y^6*Z^2+192*X*Y^6*Z^3+36*X^4*Y^2*Z^2+24*X^2*Y^4*Z^2+160*X^2*Y^3*Z^3+240*X*Y^3*Z^3+12*X^2*Y^3*Z+66*X^2*Y^2*Z^2+48*X^2*Y^2*Z+12*X*Y^3*Z+60*X^2*Y*Z+48*X*Y^2*Z+60*X*Y*Z

Algorithm definition

The algorithm ⟨6×12×32:1430⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨3×3×8:55⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table