Description of fast matrix multiplication algorithm: ⟨6×12×15:705⟩

Algorithm type

39X4Y4Z4+9X6Y2Z2+3X4Y4Z2+6X2Y6Z2+6X2Y4Z4+12X2Y2Z6+9X4Y2Z2+102X2Y4Z2+18X2Y2Z4+12XY6Z+6X2Y4Z+12XY4Z2+18X3Y2Z+93X2Y2Z2+48XY4Z+24XY2Z3+18X3YZ+24X2Y2Z+12XY3Z+48XY2Z2+24XYZ3+18X2YZ+78XY2Z+36XYZ2+30XYZ39X4Y4Z49X6Y2Z23X4Y4Z26X2Y6Z26X2Y4Z412X2Y2Z69X4Y2Z2102X2Y4Z218X2Y2Z412XY6Z6X2Y4Z12XY4Z218X3Y2Z93X2Y2Z248XY4Z24XY2Z318X3YZ24X2Y2Z12XY3Z48XY2Z224XYZ318X2YZ78XY2Z36XYZ230XYZ39*X^4*Y^4*Z^4+9*X^6*Y^2*Z^2+3*X^4*Y^4*Z^2+6*X^2*Y^6*Z^2+6*X^2*Y^4*Z^4+12*X^2*Y^2*Z^6+9*X^4*Y^2*Z^2+102*X^2*Y^4*Z^2+18*X^2*Y^2*Z^4+12*X*Y^6*Z+6*X^2*Y^4*Z+12*X*Y^4*Z^2+18*X^3*Y^2*Z+93*X^2*Y^2*Z^2+48*X*Y^4*Z+24*X*Y^2*Z^3+18*X^3*Y*Z+24*X^2*Y^2*Z+12*X*Y^3*Z+48*X*Y^2*Z^2+24*X*Y*Z^3+18*X^2*Y*Z+78*X*Y^2*Z+36*X*Y*Z^2+30*X*Y*Z

Algorithm definition

The algorithm ⟨6×12×15:705⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨3×4×5:47⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table