Description of fast matrix multiplication algorithm: ⟨5×9×11:353⟩

Algorithm type

4X4Y4Z4+X3Y6Z3+X4Y3Z4+X3Y5Z3+2X4Y4Z2+X4Y3Z3+3X3Y4Z3+2X3Y3Z4+5X2Y6Z2+X2Y4Z4+3X5Y2Z2+X4Y2Z3+X3Y3Z3+X3Y2Z4+X2Y5Z2+XY4Z4+X5YZ2+2X4Y2Z2+X4YZ3+5X3Y3Z2+6X2Y4Z2+3X2Y2Z4+XY6Z+XY3Z4+2XY2Z5+X5YZ+2X3Y3Z+2X3Y2Z2+5X2Y3Z2+X4YZ+3X3Y2Z+75X2Y2Z2+10XY4Z+XY3Z2+XY2Z3+10X3YZ+3X2Y2Z+X2YZ2+26XY3Z+6XY2Z2+9XYZ3+4X2YZ+59XY2Z+25XYZ2+58XYZ4X4Y4Z4X3Y6Z3X4Y3Z4X3Y5Z32X4Y4Z2X4Y3Z33X3Y4Z32X3Y3Z45X2Y6Z2X2Y4Z43X5Y2Z2X4Y2Z3X3Y3Z3X3Y2Z4X2Y5Z2XY4Z4X5YZ22X4Y2Z2X4YZ35X3Y3Z26X2Y4Z23X2Y2Z4XY6ZXY3Z42XY2Z5X5YZ2X3Y3Z2X3Y2Z25X2Y3Z2X4YZ3X3Y2Z75X2Y2Z210XY4ZXY3Z2XY2Z310X3YZ3X2Y2ZX2YZ226XY3Z6XY2Z29XYZ34X2YZ59XY2Z25XYZ258XYZ4*X^4*Y^4*Z^4+X^3*Y^6*Z^3+X^4*Y^3*Z^4+X^3*Y^5*Z^3+2*X^4*Y^4*Z^2+X^4*Y^3*Z^3+3*X^3*Y^4*Z^3+2*X^3*Y^3*Z^4+5*X^2*Y^6*Z^2+X^2*Y^4*Z^4+3*X^5*Y^2*Z^2+X^4*Y^2*Z^3+X^3*Y^3*Z^3+X^3*Y^2*Z^4+X^2*Y^5*Z^2+X*Y^4*Z^4+X^5*Y*Z^2+2*X^4*Y^2*Z^2+X^4*Y*Z^3+5*X^3*Y^3*Z^2+6*X^2*Y^4*Z^2+3*X^2*Y^2*Z^4+X*Y^6*Z+X*Y^3*Z^4+2*X*Y^2*Z^5+X^5*Y*Z+2*X^3*Y^3*Z+2*X^3*Y^2*Z^2+5*X^2*Y^3*Z^2+X^4*Y*Z+3*X^3*Y^2*Z+75*X^2*Y^2*Z^2+10*X*Y^4*Z+X*Y^3*Z^2+X*Y^2*Z^3+10*X^3*Y*Z+3*X^2*Y^2*Z+X^2*Y*Z^2+26*X*Y^3*Z+6*X*Y^2*Z^2+9*X*Y*Z^3+4*X^2*Y*Z+59*X*Y^2*Z+25*X*Y*Z^2+58*X*Y*Z

Algorithm definition

The algorithm ⟨5×9×11:353⟩ could be constructed using the following decomposition:

⟨5×9×11:353⟩ = ⟨3×5×6:68⟩ + ⟨2×5×5:40⟩ + ⟨3×4×6:54⟩ + ⟨2×5×6:47⟩ + ⟨2×4×6:39⟩ + ⟨3×5×5:58⟩ + ⟨3×4×5:47⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11C_1_1C_1_2C_1_3C_1_4C_1_5C_2_1C_2_2C_2_3C_2_4C_2_5C_3_1C_3_2C_3_3C_3_4C_3_5C_4_1C_4_2C_4_3C_4_4C_4_5C_5_1C_5_2C_5_3C_5_4C_5_5C_6_1C_6_2C_6_3C_6_4C_6_5C_7_1C_7_2C_7_3C_7_4C_7_5C_8_1C_8_2C_8_3C_8_4C_8_5C_9_1C_9_2C_9_3C_9_4C_9_5C_10_1C_10_2C_10_3C_10_4C_10_5C_11_1C_11_2C_11_3C_11_4C_11_5=TraceMulA_3_5A_3_6A_3_7A_3_8A_3_9A_4_5A_1_4+A_4_6A_1_1+A_4_7A_1_2+A_4_8A_1_3+A_4_9A_5_5A_2_4+A_5_6A_2_1+A_5_7A_2_2+A_5_8A_2_3+A_5_9B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_6_6B_4_1+B_6_7B_4_2+B_6_8B_4_3+B_6_9B_4_4+B_6_10B_4_5+B_6_11B_7_6B_1_1+B_7_7B_1_2+B_7_8B_1_3+B_7_9B_1_4+B_7_10B_1_5+B_7_11B_8_6B_2_1+B_8_7B_2_2+B_8_8B_2_3+B_8_9B_2_4+B_8_10B_2_5+B_8_11B_9_6B_3_1+B_9_7B_3_2+B_9_8B_3_3+B_9_9B_3_4+B_9_10B_3_5+B_9_11C_6_3C_6_4C_6_5C_7_3C_1_1+C_7_4C_1_2+C_7_5C_8_3C_2_1+C_8_4C_2_2+C_8_5C_9_3C_3_1+C_9_4C_3_2+C_9_5C_10_3C_4_1+C_10_4C_4_2+C_10_5C_11_3C_5_1+C_11_4C_5_2+C_11_5+TraceMulA_1_5-A_4_5A_1_6-A_4_6A_1_7-A_4_7A_1_8-A_4_8A_1_9-A_4_9A_2_5-A_5_5A_2_6-A_5_6A_2_7-A_5_7A_2_8-A_5_8A_2_9-A_5_9B_5_1+B_5_7B_5_2+B_5_8B_5_3+B_5_9B_5_4+B_5_10B_5_5+B_5_11B_6_1+B_6_7B_6_2+B_6_8B_6_3+B_6_9B_6_4+B_6_10B_6_5+B_6_11B_7_1+B_7_7B_7_2+B_7_8B_7_3+B_7_9B_7_4+B_7_10B_7_5+B_7_11B_8_1+B_8_7B_8_2+B_8_8B_8_3+B_8_9B_8_4+B_8_10B_8_5+B_8_11B_9_1+B_9_7B_9_2+B_9_8B_9_3+B_9_9B_9_4+B_9_10B_9_5+B_9_11C_1_1C_1_2C_2_1C_2_2C_3_1C_3_2C_4_1C_4_2C_5_1C_5_2+TraceMulA_3_4A_3_1A_3_2A_3_3A_4_4-A_1_4-A_1_1+A_4_1-A_1_2+A_4_2-A_1_3+A_4_3-A_2_4+A_5_4-A_2_1+A_5_1-A_2_2+A_5_2-A_2_3+A_5_3B_4_6B_4_1+B_4_7B_4_2+B_4_8B_4_3+B_4_9B_4_4+B_4_10B_4_5+B_4_11B_1_6B_1_7+B_1_1B_1_8+B_1_2B_1_3+B_1_9B_1_4+B_1_10B_1_5+B_1_11B_2_6B_2_7+B_2_1B_2_8+B_2_2B_2_3+B_2_9B_2_4+B_2_10B_2_5+B_2_11B_3_6B_3_1+B_3_7B_3_2+B_3_8B_3_3+B_3_9B_3_4+B_3_10B_3_5+B_3_11C_6_3C_6_4C_6_5C_7_3C_7_4C_7_5C_8_3C_8_4C_8_5C_9_3C_9_4C_9_5C_10_3C_10_4C_10_5C_11_3C_11_4C_11_5+TraceMulA_1_5A_1_4+A_1_6A_1_1+A_1_7A_1_2+A_1_8A_1_3+A_1_9A_2_5A_2_4+A_2_6A_2_1+A_2_7A_2_2+A_2_8A_2_3+A_2_9B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11C_6_1C_6_2C_7_1-C_1_1-C_1_2+C_7_2-C_2_1+C_8_1-C_2_2+C_8_2-C_3_1+C_9_1-C_3_2+C_9_2-C_4_1+C_10_1-C_4_2+C_10_2-C_5_1+C_11_1-C_5_2+C_11_2+TraceMulA_1_4A_1_1A_1_2A_1_3A_2_4A_2_1A_2_2A_2_3B_4_6-B_6_6-B_6_7+B_4_7-B_6_8+B_4_8B_4_9-B_6_9B_4_10-B_6_10B_4_11-B_6_11B_1_6-B_7_6B_1_7-B_7_7B_1_8-B_7_8B_1_9-B_7_9B_1_10-B_7_10B_1_11-B_7_11B_2_6-B_8_6B_2_7-B_8_7B_2_8-B_8_8B_2_9-B_8_9B_2_10-B_8_10B_2_11-B_8_11B_3_6-B_9_6B_3_7-B_9_7B_3_8-B_9_8B_3_9-B_9_9B_3_10-B_9_10B_3_11-B_9_11C_6_1+C_6_4C_6_2+C_6_5C_7_1+C_7_4C_7_2+C_7_5C_8_1+C_8_4C_8_2+C_8_5C_9_1+C_9_4C_9_2+C_9_5C_10_1+C_10_4C_10_2+C_10_5C_11_1+C_11_4C_11_2+C_11_5+TraceMulA_3_5A_3_6A_3_7A_3_8A_3_9A_4_5A_4_6A_4_7A_4_8A_4_9A_5_5A_5_6A_5_7A_5_8A_5_9B_5_1B_5_2B_5_3B_5_4B_5_5-B_4_1+B_6_1B_6_2-B_4_2B_6_3-B_4_3-B_4_4+B_6_4-B_4_5+B_6_5-B_1_1+B_7_1-B_1_2+B_7_2-B_1_3+B_7_3-B_1_4+B_7_4-B_1_5+B_7_5-B_2_1+B_8_1-B_2_2+B_8_2-B_2_3+B_8_3-B_2_4+B_8_4-B_2_5+B_8_5-B_3_1+B_9_1-B_3_2+B_9_2-B_3_3+B_9_3-B_3_4+B_9_4-B_3_5+B_9_5C_1_3C_1_1+C_1_4C_1_2+C_1_5C_2_3C_2_1+C_2_4C_2_2+C_2_5C_3_3C_3_1+C_3_4C_3_2+C_3_5C_4_3C_4_1+C_4_4C_4_2+C_4_5C_5_3C_5_1+C_5_4C_5_2+C_5_5+TraceMulA_3_4+A_3_6A_3_1+A_3_7A_3_2+A_3_8A_3_3+A_3_9A_4_4+A_4_6A_4_1+A_4_7A_4_2+A_4_8A_4_3+A_4_9A_5_4+A_5_6A_5_1+A_5_7A_5_2+A_5_8A_5_3+A_5_9B_4_1B_4_2B_4_3B_4_4B_4_5B_1_1B_1_2B_1_3B_1_4B_1_5B_2_1B_2_2B_2_3B_2_4B_2_5B_3_1B_3_2B_3_3B_3_4B_3_5C_1_3-C_7_3C_1_4-C_7_4C_1_5-C_7_5-C_8_3+C_2_3C_2_4-C_8_4C_2_5-C_8_5C_3_3-C_9_3C_3_4-C_9_4C_3_5-C_9_5C_4_3-C_10_3C_4_4-C_10_4C_4_5-C_10_5C_5_3-C_11_3C_5_4-C_11_4C_5_5-C_11_5

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table