Algorithm type

$6{X}^{4}{Y}^{4}{Z}^{4}+2{X}^{3}{Y}^{6}{Z}^{3}+2{X}^{3}{Y}^{5}{Z}^{3}+10{X}^{3}{Y}^{4}{Z}^{3}+6{X}^{3}{Y}^{3}{Z}^{4}+6{X}^{3}{Y}^{3}{Z}^{3}+12{X}^{2}{Y}^{4}{Z}^{2}+64{X}^{2}{Y}^{3}{Z}^{3}+8{X}^{2}{Y}^{2}{Z}^{4}+4{X}^{2}{Y}^{4}Z+20{X}^{2}{Y}^{3}{Z}^{2}+4{X}^{2}{Y}^{2}{Z}^{3}+96X{Y}^{3}{Z}^{3}+2X{Y}^{2}{Z}^{4}+76{X}^{2}{Y}^{2}{Z}^{2}+6{X}^{2}Y{Z}^{3}+16X{Y}^{4}Z+4X{Y}^{2}{Z}^{3}+6{X}^{2}{Y}^{2}Z+32X{Y}^{3}Z+2X{Y}^{2}{Z}^{2}+4XY{Z}^{3}+2{X}^{2}YZ+68X{Y}^{2}Z+30XY{Z}^{2}+112XYZ$

Algorithm definition

The algorithm ⟨5×7×24:600⟩ is the (Kronecker) tensor product of ⟨5×7×12:300⟩ with ⟨1×1×2:2⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.

Back to main table