Description of fast matrix multiplication algorithm: ⟨5×7×24:600⟩

Algorithm type

6X4Y4Z4+2X3Y6Z3+2X3Y5Z3+10X3Y4Z3+6X3Y3Z4+6X3Y3Z3+12X2Y4Z2+64X2Y3Z3+8X2Y2Z4+4X2Y4Z+20X2Y3Z2+4X2Y2Z3+96XY3Z3+2XY2Z4+76X2Y2Z2+6X2YZ3+16XY4Z+4XY2Z3+6X2Y2Z+32XY3Z+2XY2Z2+4XYZ3+2X2YZ+68XY2Z+30XYZ2+112XYZ6X4Y4Z42X3Y6Z32X3Y5Z310X3Y4Z36X3Y3Z46X3Y3Z312X2Y4Z264X2Y3Z38X2Y2Z44X2Y4Z20X2Y3Z24X2Y2Z396XY3Z32XY2Z476X2Y2Z26X2YZ316XY4Z4XY2Z36X2Y2Z32XY3Z2XY2Z24XYZ32X2YZ68XY2Z30XYZ2112XYZ6*X^4*Y^4*Z^4+2*X^3*Y^6*Z^3+2*X^3*Y^5*Z^3+10*X^3*Y^4*Z^3+6*X^3*Y^3*Z^4+6*X^3*Y^3*Z^3+12*X^2*Y^4*Z^2+64*X^2*Y^3*Z^3+8*X^2*Y^2*Z^4+4*X^2*Y^4*Z+20*X^2*Y^3*Z^2+4*X^2*Y^2*Z^3+96*X*Y^3*Z^3+2*X*Y^2*Z^4+76*X^2*Y^2*Z^2+6*X^2*Y*Z^3+16*X*Y^4*Z+4*X*Y^2*Z^3+6*X^2*Y^2*Z+32*X*Y^3*Z+2*X*Y^2*Z^2+4*X*Y*Z^3+2*X^2*Y*Z+68*X*Y^2*Z+30*X*Y*Z^2+112*X*Y*Z

Algorithm definition

The algorithm ⟨5×7×24:600⟩ is the (Kronecker) tensor product of ⟨5×7×12:300⟩ with ⟨1×1×2:2⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table