Description of fast matrix multiplication algorithm: ⟨5×7×14:349⟩

Algorithm type

4X4Y4Z4+2X4Y3Z4+6X3Y5Z3+X2Y7Z2+2X4Y2Z4+7X3Y4Z3+2X2Y6Z2+2X3Y3Z3+X3Y2Z4+2X2Y6Z+4X2Y5Z2+XY7Z+3X3Y2Z3+X2Y5Z+8X2Y4Z2+32X2Y3Z3+2X2Y4Z+11X2Y3Z2+3XY5Z+48XY3Z3+X2Y3Z+47X2Y2Z2+10XY4Z+6X2YZ2+28XY3Z+3XY2Z2+22XY2Z+90XYZ4X4Y4Z42X4Y3Z46X3Y5Z3X2Y7Z22X4Y2Z47X3Y4Z32X2Y6Z22X3Y3Z3X3Y2Z42X2Y6Z4X2Y5Z2XY7Z3X3Y2Z3X2Y5Z8X2Y4Z232X2Y3Z32X2Y4Z11X2Y3Z23XY5Z48XY3Z3X2Y3Z47X2Y2Z210XY4Z6X2YZ228XY3Z3XY2Z222XY2Z90XYZ4*X^4*Y^4*Z^4+2*X^4*Y^3*Z^4+6*X^3*Y^5*Z^3+X^2*Y^7*Z^2+2*X^4*Y^2*Z^4+7*X^3*Y^4*Z^3+2*X^2*Y^6*Z^2+2*X^3*Y^3*Z^3+X^3*Y^2*Z^4+2*X^2*Y^6*Z+4*X^2*Y^5*Z^2+X*Y^7*Z+3*X^3*Y^2*Z^3+X^2*Y^5*Z+8*X^2*Y^4*Z^2+32*X^2*Y^3*Z^3+2*X^2*Y^4*Z+11*X^2*Y^3*Z^2+3*X*Y^5*Z+48*X*Y^3*Z^3+X^2*Y^3*Z+47*X^2*Y^2*Z^2+10*X*Y^4*Z+6*X^2*Y*Z^2+28*X*Y^3*Z+3*X*Y^2*Z^2+22*X*Y^2*Z+90*X*Y*Z

Algorithm definition

The algorithm ⟨5×7×14:349⟩ could be constructed using the following decomposition:

⟨5×7×14:349⟩ = ⟨3×4×7:63⟩ + ⟨2×4×7:45⟩ + ⟨3×3×7:49⟩ + ⟨2×4×7:45⟩ + ⟨2×3×7:35⟩ + ⟨3×4×7:63⟩ + ⟨3×3×7:49⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14C_1_1C_1_2C_1_3C_1_4C_1_5C_2_1C_2_2C_2_3C_2_4C_2_5C_3_1C_3_2C_3_3C_3_4C_3_5C_4_1C_4_2C_4_3C_4_4C_4_5C_5_1C_5_2C_5_3C_5_4C_5_5C_6_1C_6_2C_6_3C_6_4C_6_5C_7_1C_7_2C_7_3C_7_4C_7_5C_8_1C_8_2C_8_3C_8_4C_8_5C_9_1C_9_2C_9_3C_9_4C_9_5C_10_1C_10_2C_10_3C_10_4C_10_5C_11_1C_11_2C_11_3C_11_4C_11_5C_12_1C_12_2C_12_3C_12_4C_12_5C_13_1C_13_2C_13_3C_13_4C_13_5C_14_1C_14_2C_14_3C_14_4C_14_5=TraceMulA_3_4A_3_5A_3_6A_3_7A_4_4A_1_1+A_4_5A_1_2+A_4_6A_1_3+A_4_7A_5_4A_2_1+A_5_5A_2_2+A_5_6A_2_3+A_5_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_1_1+B_5_8B_1_2+B_5_9B_1_3+B_5_10B_1_4+B_5_11B_1_5+B_5_12B_1_6+B_5_13B_1_7+B_5_14B_2_1+B_6_8B_2_2+B_6_9B_2_3+B_6_10B_2_4+B_6_11B_2_5+B_6_12B_2_6+B_6_13B_2_7+B_6_14B_3_1+B_7_8B_3_2+B_7_9B_3_3+B_7_10B_3_4+B_7_11B_3_5+B_7_12B_3_6+B_7_13B_3_7+B_7_14C_8_3C_1_1+C_8_4C_1_2+C_8_5C_9_3C_2_1+C_9_4C_2_2+C_9_5C_10_3C_3_1+C_10_4C_3_2+C_10_5C_11_3C_4_1+C_11_4C_4_2+C_11_5C_12_3C_5_1+C_12_4C_5_2+C_12_5C_13_3C_6_1+C_13_4C_6_2+C_13_5C_14_3C_7_1+C_14_4C_7_2+C_14_5+TraceMulA_1_4-A_4_4A_1_5-A_4_5A_1_6-A_4_6A_1_7-A_4_7A_2_4-A_5_4A_2_5-A_5_5A_2_6-A_5_6A_2_7-A_5_7B_4_1+B_4_8B_4_2+B_4_9B_4_3+B_4_10B_4_4+B_4_11B_4_5+B_4_12B_4_6+B_4_13B_4_7+B_4_14B_5_1+B_5_8B_5_2+B_5_9B_5_3+B_5_10B_5_4+B_5_11B_5_5+B_5_12B_5_6+B_5_13B_5_7+B_5_14B_6_1+B_6_8B_6_2+B_6_9B_6_3+B_6_10B_6_4+B_6_11B_6_5+B_6_12B_6_6+B_6_13B_6_7+B_6_14B_7_1+B_7_8B_7_2+B_7_9B_7_3+B_7_10B_7_4+B_7_11B_7_5+B_7_12B_7_6+B_7_13B_7_7+B_7_14C_1_1C_1_2C_2_1C_2_2C_3_1C_3_2C_4_1C_4_2C_5_1C_5_2C_6_1C_6_2C_7_1C_7_2+TraceMulA_3_1A_3_2A_3_3-A_1_1+A_4_1-A_1_2+A_4_2-A_1_3+A_4_3-A_2_1+A_5_1-A_2_2+A_5_2-A_2_3+A_5_3B_1_1+B_1_8B_1_2+B_1_9B_1_3+B_1_10B_1_4+B_1_11B_1_5+B_1_12B_1_6+B_1_13B_1_7+B_1_14B_2_1+B_2_8B_2_2+B_2_9B_2_3+B_2_10B_2_4+B_2_11B_2_5+B_2_12B_2_6+B_2_13B_2_7+B_2_14B_3_1+B_3_8B_3_2+B_3_9B_3_3+B_3_10B_3_4+B_3_11B_3_5+B_3_12B_3_6+B_3_13B_3_7+B_3_14C_8_3C_8_4C_8_5C_9_3C_9_4C_9_5C_10_3C_10_4C_10_5C_11_3C_11_4C_11_5C_12_3C_12_4C_12_5C_13_3C_13_4C_13_5C_14_3C_14_4C_14_5+TraceMulA_1_4A_1_1+A_1_5A_1_2+A_1_6A_1_3+A_1_7A_2_4A_2_1+A_2_5A_2_2+A_2_6A_2_3+A_2_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14-C_1_1+C_8_1-C_1_2+C_8_2-C_2_1+C_9_1-C_2_2+C_9_2-C_3_1+C_10_1-C_3_2+C_10_2-C_4_1+C_11_1-C_4_2+C_11_2-C_5_1+C_12_1-C_5_2+C_12_2-C_6_1+C_13_1-C_6_2+C_13_2-C_7_1+C_14_1-C_7_2+C_14_2+TraceMulA_1_1A_1_2A_1_3A_2_1A_2_2A_2_3B_1_8-B_5_8B_1_9-B_5_9B_1_10-B_5_10B_1_11-B_5_11B_1_12-B_5_12B_1_13-B_5_13B_1_14-B_5_14B_2_8-B_6_8B_2_9-B_6_9B_2_10-B_6_10B_2_11-B_6_11B_2_12-B_6_12B_2_13-B_6_13B_2_14-B_6_14B_3_8-B_7_8B_3_9-B_7_9B_3_10-B_7_10B_3_11-B_7_11B_3_12-B_7_12B_3_13-B_7_13B_3_14-B_7_14C_8_1+C_8_4C_8_2+C_8_5C_9_1+C_9_4C_9_2+C_9_5C_10_1+C_10_4C_10_2+C_10_5C_11_1+C_11_4C_11_2+C_11_5C_12_1+C_12_4C_12_2+C_12_5C_13_1+C_13_4C_13_2+C_13_5C_14_1+C_14_4C_14_2+C_14_5+TraceMulA_3_4A_3_5A_3_6A_3_7A_4_4A_4_5A_4_6A_4_7A_5_4A_5_5A_5_6A_5_7B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7-B_1_1+B_5_1-B_1_2+B_5_2B_5_3-B_1_3-B_1_4+B_5_4-B_1_5+B_5_5-B_1_6+B_5_6-B_1_7+B_5_7-B_2_1+B_6_1-B_2_2+B_6_2-B_2_3+B_6_3B_6_4-B_2_4-B_2_5+B_6_5-B_2_6+B_6_6-B_2_7+B_6_7-B_3_1+B_7_1-B_3_2+B_7_2-B_3_3+B_7_3B_7_4-B_3_4-B_3_5+B_7_5-B_3_6+B_7_6-B_3_7+B_7_7C_1_3C_1_1+C_1_4C_1_2+C_1_5C_2_3C_2_1+C_2_4C_2_2+C_2_5C_3_3C_3_1+C_3_4C_3_2+C_3_5C_4_3C_4_1+C_4_4C_4_2+C_4_5C_5_3C_5_1+C_5_4C_5_2+C_5_5C_6_3C_6_1+C_6_4C_6_2+C_6_5C_7_3C_7_1+C_7_4C_7_2+C_7_5+TraceMulA_3_1+A_3_5A_3_2+A_3_6A_3_3+A_3_7A_4_1+A_4_5A_4_2+A_4_6A_4_3+A_4_7A_5_1+A_5_5A_5_2+A_5_6A_5_3+A_5_7B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7C_1_3-C_8_3C_1_4-C_8_4C_1_5-C_8_5C_2_3-C_9_3C_2_4-C_9_4C_2_5-C_9_5C_3_3-C_10_3C_3_4-C_10_4C_3_5-C_10_5C_4_3-C_11_3C_4_4-C_11_4C_4_5-C_11_5C_5_3-C_12_3C_5_4-C_12_4C_5_5-C_12_5-C_13_3+C_6_3C_6_4-C_13_4C_6_5-C_13_5C_7_3-C_14_3C_7_4-C_14_4C_7_5-C_14_5

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table